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With its rich and diverse history, applications, and divergence proofs, the harmonic series

provides the instructor with a wealth of opportunities. The presenters will describe how they

have taken advantage of these opportunities to engage calculus students. The presentation will

focus mostly on unusual proofs and applications.
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2 The harmonic series diverges
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3 The harmonic series diverges very slowly

The harmonic series diverges, but it does so incredibly slowly. For example, the sum of the first 13,000 terms

barely exceeds 10. How many terms would be required to reach 1000? Using the lower bound on Hn that is

given above, we are sure to have Hn > 1000 if we have ln(n + 1) > 1000. In order for this inequality to be

satisfied, n must be nearly 10435. To get a good idea of just how many terms this is, consider the following:

The world’s most powerful supercomputer can do about 70 trillion operations per second. The amount

of time required to compute the sum of the first 10435 terms would be

(10435 ops)

(

1 sec

70 × 1012 ops

) (

1 hr

3600 sec

) (

1 day

24 hr

) (

1 year

365 days

)

≈ 4.5 × 10413 years.

It is difficult to appreciate the magnitude of this number. Perhaps it will suffice to compare it with the

estimated age of the universe—a mere 1.5 × 1010 years.

4 Hn is almost never an integer

Given that the sequence of Hn’s diverges, and its does so very slowly, it is rather surprising that, with the

exception of n = 1, Hn is never an integer. Here is a sketch of the proof:

Consider Hn, n > 1, and choose k so that 2k ≤ n < 2k+1. We have

Hn = 1 +
1

2
+

1

3
+ · · · +

1

2k
+ · · · +

1

n
.

Now let M be the LCM of all the denominators except 2k. That is,

M = LCM(1, 2, 3, . . . , 2k
− 1, 2k + 1, . . . , n).

A crucial point here is that M has a factor 2k−1 but not 2k.

Multiply Hn and M to get

M · Hn = M +
M

2
+

M

3
+ · · · +

M

2k
+ · · · +

M

n

= integer +
M

2k
+ integer.

Based on our definition of M , M/2k cannot be an integer. Therefore M · Hn cannot be an integer, and

it follows that Hn is not an integer.

5 Gabriel’s wedding cake

Gabriel’s horn is obtained by rotating the graph of y = 1/x, 1 ≤ x < ∞, about the x-axis. This paradoxical

solid has finite volume but infinite surface area. It is sometimes said that the horn can be filled with paint,

but cannot be painted.
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Figure 1: Gabriel’s horn

In [4], Fleron describes Gabriel’s wedding cake, a discrete analogue of Gabriel’s horn. Let f be the

following piecewise-defined function:

f(x) =



































1, 1 ≤ x < 2

1/2, 2 ≤ x < 3

. . .

1/n, n ≤ x < n + 1

. . .

Now rotate the graph of y = f(x), 1 ≤ x < ∞, about the x-axis.

Figure 2: Gabriel’s wedding cake

Gabriel’s wedding cake has volume given by

V =

∞
∑

n=1

π

(

1

n

)2

(1) = π

∞
∑
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1

n2
=

π3

6

and lateral surface area given by

A =

∞
∑

n=1

2π

(

1

n

)

(1) = 2π

∞
∑

n=1

1

n
.

Since the harmonic series diverges, Gabriel’s wedding cake is a cake you can eat, but cannot frost.

3



6 The harmonic series diverges

Suppose the harmonic series converges with sum S.
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= 2

∞
∑

n=2

1

n

= 2(S − 1).

The inequality S > 2(S − 1) implies S < 2. Since the fourth partial sum of the harmonic series already

exceeds 2, we have an obvious contradiction.

7 The leaning tower of lire

How far can a stack of equal-sized blocks be made to extend from the edge of a table? To answer this,

suppose we have an unlimited supply of rectangular blocks, each having length two units and mass one unit.

If we make a stack of only one block, then our stack can extend at most 1 unit off the table. In this case,

the center of mass of the stack will be at the edge of the table. Let’s set up a number line along the table

so that the origin is at the edge, and the positive side of the number line extends off the table.

-

0 1 2 3

Now lift the one-block stack straight up and place it on top of a single block whose end is at the origin.

The new two-block stack is made up of a one-block stack with center at −1 and a one-block stack with center

at the origin. Its center of mass is then given by

(−1)(1) + (0)(1)

2
= −

1

2
.

Therefore the new two-block stack can be pushed 1/2 of a unit off the table. After doing so, the new stack

will have center of mass at the origin, and its edge will extend

1 +
1

2

units off the table.

-

0 1 2 3
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We could continue adding blocks one at a time, but instead let’s consider the general case. Suppose we

have an (n − 1)-block stack with center of mass at the origin. We lift the stack straight up and place it on

top of a single block whose end is at the origin. The new n-block stack is made up of a one-block stack with

center of mass at −1 and an (n− 1)-block stack with center of mass at the origin. The center of mass of the

n-block stack is then given by
(−1)(1) + (0)(n − 1)

n
= −

1

n
.

Therefore, the n-block stack can be pushed 1/n units off the table so that its center of mass is at the origin.

If we constucted our n-block stack, one block at a time, by lifting and pushing as outlined above, its edge

will extend

1 +
1

2
+

1

3
+ · · · +

1

n

units off the table. With enough blocks, we can make our stack extend as far as we’d like!

(The earliest reference to this problem, that we know of, is [5].)

8 The harmonic series diverges

Proposition: For any natural number k,
1

k
+

1

k + 1
+ · · · +
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3k
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Proof:
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+ · · · +
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=

(
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k
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Corollary: The harmonic series diverges.

9 Hn and record breaking

How often should Chicagoans expect record snowfall in January? Assuming that the amount of snowfall in

January of one year has no effect on the amount of snowfall in January of any subsequent year, we have the

following.

• The first year of record keeping is a record year.

• The probability that the second year is a record year is 1
2 . So, the expected number of record snowfalls

in 2 years is 1 + 1
2 .

• The probability that the third year is a record year is 1
3 . So, the expected number of record snowfalls

in 3 years is 1 + 1
2 + 1

3 .

• In general, after n years of observation, we should expect Hn record years.
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The following data were collected from the Illinois State Climatologist Office. When all is said and done,

record breaking snowfall in January is pretty predictable.

Inches of Snowfall for January, 1960–2004

Measured at O’Hare Airport—Chicago, IL

(R denotes a record year)

Year Inches Year Inches Year Inches

1960 3.5 R 1975 3.5 1990 3.2

1961 3.0 1976 10.0 1991 11.1

1962 18.6 R 1977 7.2 1992 5.6

1963 16.8 1978 21.9 1993 15.2

1964 1.6 1979 34.3 R 1994 14.2

1965 11.7 1980 6.2 1995 13.1

1966 15.5 1981 2.0 1996 5.9

1967 25.1 R 1982 22.9 1997 no data

1968 10.4 1983 5.0 1998 no data

1969 3.7 1984 17.2 1999 29.6

1970 9.5 1985 18.9 2000 13.6

1971 10.0 1986 6.9 2001 1.5

1972 7.6 1987 17.3 2002 15.5

1973 0.5 1988 5.4 2003 4.3

1974 7.4 1989 0.4 2004 14.6

Table 1: Chicago snowfall data obtained from the Illinois State Climatologist Office
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The following table shows the numbers of Illinois tornadoes for the years 1956–2004. During the 49 years

of observation, there were 5 record years. Since H49 ≈ 4.5, perhaps Illinois should not expect a record

number of tornadoes any time soon.

Number of Illinois Tornadoes, 1956–2004

(R denotes a record year)

Year Tornadoes Year Tornadoes Year Tornadoes

1956 28 R 1973 63 R 1990 50

1957 42 R 1974 107 R 1991 32

1958 27 1975 46 1992 23

1959 37 1976 27 1993 34

1960 40 1977 33 1994 20

1961 34 1978 13 1995 76

1962 13 1979 12 1996 62

1963 11 1980 14 1997 29

1964 7 1981 33 1998 99

1965 28 1982 35 1999 64

1966 11 1983 14 2000 55

1967 40 1984 34 2001 21

1968 8 1985 15 2002 35

1969 10 1986 22 2003 120 R

1970 17 1987 22 2004 80

1971 16 1988 20

1972 30 1989 15

Table 2: Illinois tornado data obtained from The Disaster Center.

7



10 The harmonic series diverges

For any divergent series, there is a much smaller divergent series. (See [1].)

Proposition: If an > 0,

∞
∑

n=1

an diverges, and sn = a1 + a2 + · · · + an, then

∞
∑

n=1

an+1

sn
diverges.

Proof: First notice that

∞
∑

n=1

an+1

sn
=

∞
∑

n=1

sn+1 − sn

sn
.

6

-
-

6

x
sn sn+1

Shaded Area =
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sn
(sn+1 − sn)

y

y = 1/x

1

sn
(sn+1 − sn) >

∫ sn+1

sn

1

x
dx

∞
∑

n=1

1

sn
(sn+1 − sn) >

∫

∞

s1

1

x
dx = ∞

Corollary 1: The harmonic series diverges.

Corollary 2:

∞
∑

n=1

1

nHn
diverges (very, very slowly).

11 The collector’s problem

You have just purchased your 10th box of Sugary Goodness breakfast cereal desperately trying to collect

all six toys for your child. How many more should you expect to purchase before your set of six toys is

complete?

Assuming that each cereal box contains exactly one toy and that each toy is equally likely, we have the

following:

• The probability of getting one toy with the first box purchased is 1.
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• Given that you have one toy, the probability of getting a second (non-duplicate) toy with your next

purchase is 5/6. So, the expected number of boxes you would need to purchase is 6/5.

• Given that you have two distinct toys, the probability of getting a third (non-duplicate) toy with your

next purchase is 4/6. So, the expected number of boxes you would need to purchase is 6/4.

• If we continue with this resoning, you should expect to have a complete set after

1 +
6

5
+
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4
+

6

3
+

6

2
+

6

1
= 6 ·

(

1 +
1

2
+

1

3
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1

4
+

1

5
+

1

6

)

= 6 · H6

purchases.

In general, the expected number of purchases necessary to obtain one complete set of n objects is

n ·

(

1 +
1

2
+

1

3
+ · · · +

1

n

)

= nHn.

(For more information on the collector’s problem, see [7].)

12 Sums of partial sums

This Proof Without Words appears in [6].

n−1
∑
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Hk + n = nHn
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∑
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Fit the shapes together for n groups of Hn.
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13 The harmonic series diverges

Jacob Bernoulli gave credit for this proof to his brother Johann. An enjoyable account of the history of the

proof can be found in the works of Dunham [2, 3].

Consider the series

1

2
+

1

6
+

1
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+

1
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+ · · · =

∞
∑
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1
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=

∞
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(

1

n
−

1

n + 1

)

.

As it is written on the right, the series is telescoping and converges to 1. With this series serving as an

illustration, note that

∞
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n=k

1

n(n + 1)
=

∞
∑

n=k

(

1

n
−

1
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)

=
1

k
, k = 1, 2, 3, . . . .

Now suppose that the harmonic series converges with sum S. Then
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+
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1
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1
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)

+

(

1
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1
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1
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+ · · ·

= 1 +

∞
∑
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+

∞
∑
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∞
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1
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+ · · ·

= 1 + 1 +
1

2
+

1

3
+ · · ·

= 1 + S.

The contradiction S = 1 + S concludes the proof.

14 Sums of partial sums

∞
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=

∞
∑
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2
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∞
∑
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With this in mind,
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=
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15 Upper bound on Hn
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Hn < 1 + lnn
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16 Lower bound on Hn from trapezoid rule

1

1 2 3 4 5 n
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)
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+
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+ · · · +
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+ · · · +
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+ · · · +
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17 Some miscellaneous facts

• Better bounds on Hn: lnn − ln 2 +
5

4
+

1

2n
< Hn < lnn − ln 2 +

3

2
, n = 3, 4, 5, . . .

• Except for n = 1, n = 2, and n = 6, Hn is not a terminating decimal.

• Wolstenholme’s theorem: If p > 3 and p is prime, the numerator of Hp−1 is divisible by p2.

• lim
n→∞

(Hn − lnn) = γ ≈ 0.5772

• For each natural number n, there exists cn between 0 and 1 such that

Hn =
1

2
ln(n2 + n) + γ +

cn

6n2 + 6n
.
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• −
ln(1 − x)

1 − x
=

∞
∑

n=1

Hnxn, −1 < x < 1

•

∞
∑

n=1

Hn

(n + 1)2n+1
=

(ln 2)2

2

•

∞
∑

n=1

Hn

n2n
=

π2
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