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1 Introduction

There are a number of methods for approximating square roots with rational
numbers. One remarkably simple technique was presented in the 1998 NCTM
yearbook (Mason, 1998). This technique is probably best described as a pictorial
approach to linear interpolation. Interestingly, it can be used as a starting point
for a new method of approximating square roots to any desired accuracy. In
addition, the technique has some interesting generalizations.

The idea described in the yearbook article is based on the classical Greek no-
tion that perfect squares, or square numbers, can be depicted by square arrange-

ments of dots (see Figure 1). The principle square root of a square number is

1 4 9 16

Figure 1: The first four square numbers

simply the number of dots along a side of the corresponding square. Of course
this does not apply to non-square numbers, but it does lead to a quick and easy

method for approximating square roots. This method is illustrated in Figure 2.

* Appears without appendix in The AMATYC Review, Vol. 24, No. 2, Spring 2003, p. 57-63
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Figure 2: Approximating square roots

In applying this technique, squares are constructed by adjoining dots arranged
in the shape of a backward L. These arrangements of dots are called gnomons.
A gnomon is a shape which, when added to a figure, yields another figure similar
to the original. It is not difficult to determine a bound on the error made when

this method of gnomons is used to approximate a square root.

2 Error and Consequences

The error bound

Suppose that x is some positive integer between the integers n? and (n + 1)2.
If we attempt to arrange = dots into the shape of a square, we will obtain an
n x n square with = — n? dots left over. Since n? and (n + 1)? differ by 2n + 1,

our approximation for \/z will be given by

LL‘*TLQ

K(n,z) = .
() =n+ 527

For the sake of illustration, Table 1 gives several approximations, including those
from Figure 2, and their corresponding errors.

Until now, we have been restricting our attention to integral values of x.

N

n ‘ K(n,z) ‘ vz — K(n,x) ‘
8 | 2 22 0.02843
11 | 3 32 0.03091
21 | 4 45 0.02702
48 | 6 | 61 0.00513
109 | 10 | 10; 0.01173

Table 1: Several square root approximations



This helps to motivate the technique (see Figure 2), but the restriction is not
necessary. For any fixed nonnegative integer n, K is a linear function of the real
variable z whose graph passes through the points (n?,n) and ((n +1)*,n +1).
At this point, the proof of the following theorem is a straight-forward optimiza-

tion problem, much like those encountered in a beginning calculus course.

Theorem 1 Let n be a nonnegative integer. If n> < x < (n+ 1), then

1
44 8n’

[Vr — K(n,z)| = Vo — K(n,z) <
Equality holds if and only if x = (n + 1)2.

Although this result was described in the College Mathematics Journal over
twenty-five years ago (McKenna, 1976), one very interesting consequence seems
to have never been discussed: the error made in approximating v/100z is sig-
nificantly less than that made in approximating +/z. Since v/z can be obtained
from /1002 by simply shifting the position of the decimal point, a more accurate

approximation can be obtained with little or no extra cost.

Refining the approximations

Suppose we wish to approximate v/17. Since 17 is between 42 and 52, we find
that V17 ~ K (4,17) = 4% ~ 4.11111 and, according to Theorem 1,

1
Error = V17— K(4,17) < 36~ 0.03.
However, we could approximate v/1700 with greater accuracy, and thereby ob-
tain a better approximation for v/17. Specifically, since 1700 is between 412 and

422, we find that

1
V1700 ~ K (41,1700) = 41% ~ 41.2289

so that

K (41,1700) 1 19
Vi —————2 = — 41— ) = 4.122
7 10 (10) < 83) 89

It follows from Theorem 1 that

1700 _ K(41,1700) _ gy

10 10 - 10

Therefore the error in our new approximation is less than 1/3320 = 0.0003.



Why stop here? We could approximate v/170000 or /17000000 to obtain
even better results. But of course, there is a catch. Without an accurate
approximation for a square root, how do we obtain the consecutive perfect
squares that bound the radicand? In other words, how do we find the n in
the K (n,z)? Fortunately, we can use our technique recursively, finding new n’s
from old n’s. The following result is a simple consequence of the inequality in

Theorem 1, and it provides exactly what we need.

Corollary 1 Let |u] represent the greatest integer less than or equal to the real

number u and let n be a positive integer. If n? < x < (n+ 1)2, then

| 10K (n,z)]? < 100z < (|10K (n,2)] + 2)°.

The algorithm

In the case of v/17 and \/W7 Corollary 1 assures us that 1700 is between 412
and 432. We could simply compute 422 to determine the required interval. If we
continue with this example, our next step would be to approximate v/170000.
According to Corollary 1, 170000 is between 4122 and 414%, and we would

compute 4132 to refine our interval. When all is said and done, we find that

256
V170000 =~ K (412,170000) = 412% ~ 412.310303

so that

K (412,170000) 1 256
VT 2 ) o () (412222 ) & 4.12310303.
100 <100> ( 825)

Theorem 1 guarantees that the error in this approximation is less than 1/330000 ~
0.000003.

In general, given a real number x € [1,100) and a positive integer n such
that = € [n?, (n + 1)?], the following algorithm proceeds through M iterations

of our method, returning an approximation for /.



n=n

fori=1,2,..., M —1
x; = K(n;, 10%2x)
ri = x;/10"71

)

)

) (z; =101 /7)
)

5) nit1 = [10x;]

)

)

)

)

(ri =)

if (ni41 +1)? < 100%x
Nip1 = Nip1 +1
end if

next ¢

Based on Cor. 1, lines 5-8
find the perfect squares that

bound the next radicand

rvM = K(HM, 102M—23})/10M_1

return r),

The final approrimation

As a consequence of Theorem 1, we can find an upper bound for the error

at each step of the algorithm.

Corollary 2 Suppose x € [1,100) and n is a positive integer such that
x € [n?, (n+ 1)2]. Referring to the algorithm above,

1 1 1
0<Vz—r < : < —
_\/E T >~ (4+8n1> (107,—1) — 8”'1021_2

fori=1,2,..., M.

Table 2 summarizes the results of the our algorithm when it is applied to

x = 2. The error bounds shown in the table are those given by Corollary 2.

i

|

n; ‘ T

Error Bound ‘

|

VT —
1 1 2 1.25 x 1071 | 8.09 x 1072
2| 14 = 1.25 x 1073 | 4.20 x 10~*
3] 141 ol 1.25x 107° | 8.62 x 107°
4| 1414 apans 1.25x 1077 | 594 x 107®
5| 14142 | 29090518 | 1.25x 1079 | 4.14 x 10710
6 | 141421 | 29008026831 | 125 x 10~ | 8.11 x 10712

Table 2: Algorithm results when x = 2



Remarks

Although Corollaries 1 and 2 depend on x being greater than or equal to 1,
the algorithm’s restriction of x to the interval [1,100) is merely a matter of
convenience. In such a case, a moment’s consideration will give the perfect
squares that bound z. Any other positive z could be written in the form z =
7 x 102 where r € [1,100), and then the algorithm could be applied to r. For
example, if 2 = 5739.3 = 57.393 x 10%, then r = 57.393 and r is between the
perfect squares 49 and 64.

We see from Corollary 2 that the number of correct digits in an approxima-
tion increases by about two with each iteration. (For a specific example, see the
\/x —r; column in the table above.) While the algorithm moves along quickly, it
is far slower than Newton’s method or other higher order methods. Nonetheless,
the new algorithm does have its selling points. First, it is very easily motivated.
Its derivation is straight-forward, and it is easily illustrated. The algorithm is
also remarkably elementary; the proof of its convergence requires no advanced
mathematics, and its usage involves no difficult computations. It is quite simple
to perform two or three iterations by hand, after which you can be certain of the
accuracy you have obtained. In addition, knowledge of the algorithm improves
one’s number sense when it comes to square roots.

Notice that lines 6-8 of the algorithm apply the check step in which the
bounding interval is refined. In practice, it turns out that this step is not

necessary and may be skipped with little effect on the quality of the results.

3 Generalizing the Method of Gnomons

Although the method of gnomons was not introduced with quadratic equations
in mind, we can obviously think of it as a way of generating an approximation
for the positive solution of 22 = A, where A is a positive integer. Taking this
point of view, the method can easily be generalized.

The square numbers are only one group of a class of numbers called figurate.
A figurate number is a number that can be depicted by an arrangement of
dots in the shape of a common geometric figure (often a regular polygon). For

example, the first four triangular numbers are shown in Figure 3.



Figure 3: The first four triangular numbers

The nth triangular number is n(n + 1)/2. Therefore, a method of gnonoms
can be used to approximate the unique positive solution of

1 1
§x2+§1’:14.,

where A is a positive integer. If we apply the technique when A = 13, we
find that the quadratic equation %aﬂ + %x = 13 has a positive solution that is

approximately 4%. This is illustrated in Figure 4.

Figure 4: %xz + %x =13=a= 4%

The method also generalizes quite nicely to rectangular numbers of the form
n? +n, n?> + 2n, etc. and to other figurate numbers. In each case, one could
establish a result analogous to Theorem 1. For example, the following general-
ization of Theorem 1 can be illustrated using rectangular arrays of dots where
the length is &k more than the width.

Theorem 2 Let n and k be positive integers, and suppose A is a real number
in the interval [n(n+ k), (n+1)(n+1+k)]. If R is the unique positive solution
of x(x + k) = A, then

A—n(n+k)
A
and A (k) )
—n(n+
<R - < .
0< R <n+ 2n+1+k >_4k‘—|—4+8n

Equality holds if and only if x = i(l + 2k + 4n + 4kn + 4n?).
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Appendix

Proof of Theorem 1

Let n be a fixed nonnegative integer and define f for x € [n?, (n + 1)2] by
xr —mn?

2n+1°

F@) = VE— K(n,2) = Vi —n -
f is continuous on [n?, (n + 1)?] and differentiable on (n?, (n + 1)?), and
1 1
! PR SR —
@) =57 " ans1
The only critical point of f occurs where f’(x) = 0. This is the point where
a::n2+n—|—% = (n—l—%)2 and f(z) = ﬁ.
Now f”(x) = —z~3/2/4 and therefore the graph of f is concave down on
(n?, (n + 1)?). Furthermore f(n?) = f((n+ 1)?) = 0. So f is nonnegative on

[n?, (n + 1)?] and attains a unique maximum at the point <(n + 1), ﬁ).

Proof of Corollary 1

Let |u] represent the greatest integer less than or equal to the real number w,
let [u] represent the least integer greater than or equal to the real number w,
and let n be a positive integer. If x € [n?, (n + 1)?], then, by Theorem 1,

1
44 8n’

K(n,z) <z < K(n,z)+

It follows that

10K (n,z) < 10y/x < 10K (n,z) + <10K(n,z) +1

44 8n
so that
|10K (n,z)| < 10y/z < [10K (n,z) + 1].

Now since [u + 1] = [u] + 1, we have
| 10K (n,z)| <10y/x < [10K (n,z)] + 1
and upon squaring, we get
|10K (n,z)|? < 100z < ([10K (n,z)] + 1)%.
Finally, since [u] + 1 < |u] + 2, we obtain the result

| 10K (n,z)]? < 100z < ([10K (n,z)] 4+ 2)*.



Proof of Corollary 2

Suppose that n is a positive integer and = € [n?, (n + 1)?]. Referring to the
algorithm, we first establish that

n? <10 2%z < (n; + 1)

fori=1,2,..., M. The proof is by induction on 1.

By definition of ny (n; = n), we have
n? <z < (ng+1)~%
Now suppose the inequality above holds for ¢ = k. Then
ni < 10%72x < (ng +1)?
and, by Corollary 1, we have
| 10K (ng,, 10%%722) |2 < 100 - 10°* 722 < ([10K (ng, 10%22)] + 2)2

or
[10K (ny., 102722 |2 < 10%2 < ([10K (ny,, 102722) | 4 2)*.

Since nyy1 = | 10K (ng, 102*=22)] (lines 3 and 5 of the algorithm), we now have
niyq < 10%%2 < (npy1 + 2)2 .

After evaluating (npy1 + 1)2, comparing its value against 102*z = 100*z, and

renaming ngy1 if necessary (lines 6-8 of the algorithm), we get
ni ., <10%%z < (ngga +1)%.
It follows that
n? <1022 < (n; + 1)? (1)
fori=1,2,..., M, and the first part of the proof is finished.
Now, each x; is defined by z; = K(n;,10%~2z), and since the inequality (1)
holds, it follows from Theorem 1 that

V10%i-2g — g; < ! .

Upon dividing by 10°~!, we get

ZT; 1 1
— - < - .
Ve 10i-1 = (4+8m> (1011)

10




Since r; = mxlii_l (line 4 of the algorithm), we see that

VE—ri s (4 +18ni> (101—1) @

Finally, by taking square roots in inequality (1), we have

ni—1 <107%r <mi+ 1, i=2,3.4,...
and
n <107z <nmi+1, i=1,23,.... (3)

After multiplying the first inequality by 10, we have
10n;_1 < 107 1/z < 10(n;_1 + 1). (4)

Notice that by inequality (3), n; and n; + 1 are consecutive positive integers
bounding 10°~!/z. From inequality (4), the positive (non-consecutive) integers
10n;_1 and 10(n;—1+1) also bound 10%-1 v/z. Since there are no integers between

n; and n; + 1, we must have
10n,_1 <n; <n; +1< 10(717;_1 + 1)

Therefore
10n; 1 <n; <107z <n +1<10(ni_1 +1).

Specifically, 10n;_1; < n; and inductively, 10°"'n; < n,.

So at last we have

o (o) () < () ) < () ()

Inequality (2) since 10i-1n;<n;

Proof of Theorem 2

Let n and k be positive integers, and suppose A is a real number in the interval
[n(n+k),(n+1)(n+ 1+ k)]. The unique positive solution, R, of z(x + k) = A

is given by the quadratic formula:

R —k+VEk?2+4A
2

Now define f as a function of A by

_ —k+\/m_(n+A—n(n+k)>.

f(4) 2 2n+1+k

11



Notice that f(A) is the error made in approximating the unique positive solution
of z(x + k) :Abyn—i-%.
f is a differentiable function of A on (n(n+k),(n+1)(n+1+k)) and

1 1

ViZ+4A 2n+1+4k

The only critical point of f occurs where f/(A) = 0. This is the point where
Now f"(A) = —2(k*44A)~3/2 and therefore the graph of f is concave down

on (n(n+k),(n+1)(n+ 1+ k)). Furthermore

f'(A) =

fnn+k)=f((n+1)(n+1+k)) =0.

So f is nonnegative on [n(n+k), (n+1)(n+1+4k)] and attains a unique maximum
at the point ($(1+ 2k + 4n + 4kn + 4n%), gt ).

Mathematica Code

The Mathematica code for the algorithm is given here.

Kln_,x_]:=n + (xn"2) / (2n+1)

SQR[x_,n_,M_] :=Module[{xx,nn,rr},
nn=n;
Do[
xx=K[nn, 10~ (2i-2) x];
rr=10"(1-1i) =xx;
nn=Floor[10 xx];
If[(nn+1)"2 < 100"i x, nn=nn+1], {i,1,M-1}];
rr=K[nn,10" (2M-2) x] 10~ (1-M);
Print[rr]]

To produce the results in Table 2, enter SQR[2,1,1], SQR[2,1,2], etc.
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