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1 Introduction

There are a number of methods for approximating square roots with rational

numbers. One remarkably simple technique was presented in the 1998 NCTM

yearbook (Mason, 1998). This technique is probably best described as a pictorial

approach to linear interpolation. Interestingly, it can be used as a starting point

for a new method of approximating square roots to any desired accuracy. In

addition, the technique has some interesting generalizations.

The idea described in the yearbook article is based on the classical Greek no-

tion that perfect squares, or square numbers, can be depicted by square arrange-

ments of dots (see Figure 1). The principle square root of a square number is
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Figure 1: The first four square numbers

simply the number of dots along a side of the corresponding square. Of course

this does not apply to non-square numbers, but it does lead to a quick and easy

method for approximating square roots. This method is illustrated in Figure 2.

∗Appears without appendix in The AMATYC Review, Vol. 24, No. 2, Spring 2003, p. 57–63
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Figure 2: Approximating square roots

In applying this technique, squares are constructed by adjoining dots arranged

in the shape of a backward L. These arrangements of dots are called gnomons.

A gnomon is a shape which, when added to a figure, yields another figure similar

to the original. It is not difficult to determine a bound on the error made when

this method of gnomons is used to approximate a square root.

2 Error and Consequences

The error bound

Suppose that x is some positive integer between the integers n2 and (n + 1)2.

If we attempt to arrange x dots into the shape of a square, we will obtain an

n× n square with x− n2 dots left over. Since n2 and (n + 1)2 differ by 2n + 1,

our approximation for
√

x will be given by

K(n, x) = n +
x− n2

2n + 1
.

For the sake of illustration, Table 1 gives several approximations, including those

from Figure 2, and their corresponding errors.

Until now, we have been restricting our attention to integral values of x.

x n K(n, x)
√

x−K(n, x)

8 2 2 4
5 0.02843

11 3 3 2
7 0.03091

21 4 4 5
9 0.02702

48 6 6 12
13 0.00513

109 10 10 9
21 0.01173

Table 1: Several square root approximations
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This helps to motivate the technique (see Figure 2), but the restriction is not

necessary. For any fixed nonnegative integer n, K is a linear function of the real

variable x whose graph passes through the points (n2, n) and
(
(n + 1)2, n + 1

)
.

At this point, the proof of the following theorem is a straight-forward optimiza-

tion problem, much like those encountered in a beginning calculus course.

Theorem 1 Let n be a nonnegative integer. If n2 ≤ x ≤ (n + 1)2, then

|
√

x−K(n, x)| =
√

x−K(n, x) ≤ 1
4 + 8n

.

Equality holds if and only if x = (n + 1
2 )2.

Although this result was described in the College Mathematics Journal over

twenty-five years ago (McKenna, 1976), one very interesting consequence seems

to have never been discussed: the error made in approximating
√

100x is sig-

nificantly less than that made in approximating
√

x. Since
√

x can be obtained

from
√

100x by simply shifting the position of the decimal point, a more accurate

approximation can be obtained with little or no extra cost.

Refining the approximations

Suppose we wish to approximate
√

17. Since 17 is between 42 and 52, we find

that
√

17 ≈ K(4, 17) = 4 1
9 ≈ 4.11111 and, according to Theorem 1,

Error =
√

17−K(4, 17) ≤ 1
36

≈ 0.03.

However, we could approximate
√

1700 with greater accuracy, and thereby ob-

tain a better approximation for
√

17. Specifically, since 1700 is between 412 and

422, we find that

√
1700 ≈ K(41, 1700) = 41

19
83

≈ 41.2289

so that
√

17 ≈ K(41, 1700)
10

=
(

1
10

) (
41

19
83

)
≈ 4.12289

It follows from Theorem 1 that
√

1700
10

− K(41, 1700)
10

≤
1

332

10
.

Therefore the error in our new approximation is less than 1/3320 ≈ 0.0003.
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Why stop here? We could approximate
√

170000 or
√

17000000 to obtain

even better results. But of course, there is a catch. Without an accurate

approximation for a square root, how do we obtain the consecutive perfect

squares that bound the radicand? In other words, how do we find the n in

the K(n, x)? Fortunately, we can use our technique recursively, finding new n’s

from old n’s. The following result is a simple consequence of the inequality in

Theorem 1, and it provides exactly what we need.

Corollary 1 Let buc represent the greatest integer less than or equal to the real

number u and let n be a positive integer. If n2 ≤ x ≤ (n + 1)2, then

b10K(n, x)c2 ≤ 100x ≤ (b10K(n, x)c+ 2)2 .

The algorithm

In the case of
√

17 and
√

1700, Corollary 1 assures us that 1700 is between 412

and 432. We could simply compute 422 to determine the required interval. If we

continue with this example, our next step would be to approximate
√

170000.

According to Corollary 1, 170000 is between 4122 and 4142, and we would

compute 4132 to refine our interval. When all is said and done, we find that

√
170000 ≈ K(412, 170000) = 412

256
825

≈ 412.310303

so that

√
17 ≈ K(412, 170000)

100
=

(
1

100

) (
412

256
825

)
≈ 4.12310303.

Theorem 1 guarantees that the error in this approximation is less than 1/330000 ≈
0.000003.

In general, given a real number x ∈ [1, 100) and a positive integer n such

that x ∈ [n2, (n + 1)2], the following algorithm proceeds through M iterations

of our method, returning an approximation for
√

x.
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(1) n1 = n

(2) for i = 1, 2, . . . ,M − 1

(3) xi = K(ni, 102i−2x) (xi ≈ 10i−1
√

x )

(4) ri = xi/10i−1 ( ri ≈
√

x )

(5) ni+1 = b10xic
(6) if (ni+1 + 1)2 < 100ix Based on Cor. 1, lines 5–8

(7) ni+1 = ni+1 + 1 find the perfect squares that

(8) end if bound the next radicand

(9) next i

(10) rM = K(nM , 102M−2x)/10M−1 The final approximation

(11) return rM

As a consequence of Theorem 1, we can find an upper bound for the error

at each step of the algorithm.

Corollary 2 Suppose x ∈ [1, 100) and n is a positive integer such that

x ∈ [n2, (n + 1)2]. Referring to the algorithm above,

0 ≤
√

x− ri ≤
(

1
4 + 8ni

) (
1

10i−1

)
≤ 1

8n · 102i−2
,

for i = 1, 2, . . . ,M .

Table 2 summarizes the results of the our algorithm when it is applied to

x = 2. The error bounds shown in the table are those given by Corollary 2.

i ni ri Error Bound
√

x− ri

1 1 4
3 1.25× 10−1 8.09× 10−2

2 14 41
29 1.25× 10−3 4.20× 10−4

3 141 20011
14150 1.25× 10−5 8.62× 10−6

4 1414 400081
282900 1.25× 10−7 5.94× 10−8

5 14142 200005153
141425000 1.25× 10−9 4.14× 10−10

6 141421 20000020331
14142150000 1.25× 10−11 8.11× 10−12

Table 2: Algorithm results when x = 2
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Remarks

Although Corollaries 1 and 2 depend on x being greater than or equal to 1,

the algorithm’s restriction of x to the interval [1, 100) is merely a matter of

convenience. In such a case, a moment’s consideration will give the perfect

squares that bound x. Any other positive x could be written in the form x =

r × 102k where r ∈ [1, 100), and then the algorithm could be applied to r. For

example, if x = 5739.3 = 57.393 × 102, then r = 57.393 and r is between the

perfect squares 49 and 64.

We see from Corollary 2 that the number of correct digits in an approxima-

tion increases by about two with each iteration. (For a specific example, see the
√

x−ri column in the table above.) While the algorithm moves along quickly, it

is far slower than Newton’s method or other higher order methods. Nonetheless,

the new algorithm does have its selling points. First, it is very easily motivated.

Its derivation is straight-forward, and it is easily illustrated. The algorithm is

also remarkably elementary; the proof of its convergence requires no advanced

mathematics, and its usage involves no difficult computations. It is quite simple

to perform two or three iterations by hand, after which you can be certain of the

accuracy you have obtained. In addition, knowledge of the algorithm improves

one’s number sense when it comes to square roots.

Notice that lines 6–8 of the algorithm apply the check step in which the

bounding interval is refined. In practice, it turns out that this step is not

necessary and may be skipped with little effect on the quality of the results.

3 Generalizing the Method of Gnomons

Although the method of gnomons was not introduced with quadratic equations

in mind, we can obviously think of it as a way of generating an approximation

for the positive solution of x2 = A, where A is a positive integer. Taking this

point of view, the method can easily be generalized.

The square numbers are only one group of a class of numbers called figurate.

A figurate number is a number that can be depicted by an arrangement of

dots in the shape of a common geometric figure (often a regular polygon). For

example, the first four triangular numbers are shown in Figure 3.
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Figure 3: The first four triangular numbers

The nth triangular number is n(n + 1)/2. Therefore, a method of gnonoms

can be used to approximate the unique positive solution of

1
2
x2 +

1
2
x = A,

where A is a positive integer. If we apply the technique when A = 13, we

find that the quadratic equation 1
2x2 + 1

2x = 13 has a positive solution that is

approximately 4 3
5 . This is illustrated in Figure 4.r rr r rr rr r rrrr b b

Figure 4: 1
2x2 + 1

2x = 13 ⇒ x ≈ 4 3
5

The method also generalizes quite nicely to rectangular numbers of the form

n2 + n, n2 + 2n, etc. and to other figurate numbers. In each case, one could

establish a result analogous to Theorem 1. For example, the following general-

ization of Theorem 1 can be illustrated using rectangular arrays of dots where

the length is k more than the width.

Theorem 2 Let n and k be positive integers, and suppose A is a real number

in the interval [n(n+ k), (n+1)(n+1+ k)]. If R is the unique positive solution

of x(x + k) = A, then

R ≈ n +
A− n(n + k)
2n + 1 + k

and

0 ≤ R−
(

n +
A− n(n + k)
2n + 1 + k

)
≤ 1

4k + 4 + 8n
.

Equality holds if and only if x = 1
4 (1 + 2k + 4n + 4kn + 4n2).
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Appendix

Proof of Theorem 1

Let n be a fixed nonnegative integer and define f for x ∈ [n2, (n + 1)2] by

f(x) =
√

x−K(n, x) =
√

x− n− x− n2

2n + 1
.

f is continuous on [n2, (n + 1)2] and differentiable on (n2, (n + 1)2), and

f ′(x) =
1

2
√

x
− 1

2n + 1
.

The only critical point of f occurs where f ′(x) = 0. This is the point where

x = n2 + n + 1
4 = (n + 1

2 )2 and f(x) = 1
4+8n .

Now f ′′(x) = −x−3/2/4 and therefore the graph of f is concave down on

(n2, (n + 1)2). Furthermore f(n2) = f((n + 1)2) = 0. So f is nonnegative on

[n2, (n + 1)2] and attains a unique maximum at the point
(
(n + 1

2 )2, 1
4+8n

)
.

Proof of Corollary 1

Let buc represent the greatest integer less than or equal to the real number u,

let due represent the least integer greater than or equal to the real number u,

and let n be a positive integer. If x ∈ [n2, (n + 1)2], then, by Theorem 1,

K(n, x) ≤
√

x ≤ K(n, x) +
1

4 + 8n
.

It follows that

10K(n, x) ≤ 10
√

x ≤ 10K(n, x) +
10

4 + 8n
< 10K(n, x) + 1

so that

b10K(n, x)c ≤ 10
√

x < d10K(n, x) + 1e.

Now since du + 1e = due+ 1, we have

b10K(n, x)c ≤ 10
√

x < d10K(n, x)e+ 1

and upon squaring, we get

b10K(n, x)c2 ≤ 100x < (d10K(n, x)e+ 1)2 .

Finally, since due+ 1 ≤ buc+ 2, we obtain the result

b10K(n, x)c2 ≤ 100x < (b10K(n, x)c+ 2)2 .
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Proof of Corollary 2

Suppose that n is a positive integer and x ∈ [n2, (n + 1)2]. Referring to the

algorithm, we first establish that

n2
i ≤ 102i−2x ≤ (ni + 1)2

for i = 1, 2, . . . ,M. The proof is by induction on i.

By definition of n1 (n1 = n), we have

n2
1 ≤ x ≤ (n1 + 1)2.

Now suppose the inequality above holds for i = k. Then

n2
k ≤ 102k−2x ≤ (nk + 1)2

and, by Corollary 1, we have

b10K(nk, 102k−2x)c2 ≤ 100 · 102k−2x ≤
(
b10K(nk, 102k−2x)c+ 2

)2

or

b10K(nk, 102k−2x)c2 ≤ 102kx ≤
(
b10K(nk, 102k−2x)c+ 2

)2
.

Since nk+1 = b10K(nk, 102k−2x)c (lines 3 and 5 of the algorithm), we now have

n2
k+1 ≤ 102kx ≤ (nk+1 + 2)2 .

After evaluating (nk+1 + 1)2, comparing its value against 102kx = 100kx, and

renaming nk+1 if necessary (lines 6–8 of the algorithm), we get

n2
k+1 ≤ 102kx ≤ (nk+1 + 1)2 .

It follows that

n2
i ≤ 102i−2x ≤ (ni + 1)2 (1)

for i = 1, 2, . . . ,M , and the first part of the proof is finished.

Now, each xi is defined by xi = K(ni, 102i−2x), and since the inequality (1)

holds, it follows from Theorem 1 that
√

102i−2x− xi ≤
1

4 + 8ni
.

Upon dividing by 10i−1, we get

√
x− xi

10i−1
≤

(
1

4 + 8ni

) (
1

10i−1

)
.
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Since ri =
xi

10i−1
(line 4 of the algorithm), we see that

√
x− ri ≤

(
1

4 + 8ni

) (
1

10i−1

)
. (2)

Finally, by taking square roots in inequality (1), we have

ni−1 ≤ 10i−2
√

x ≤ ni−1 + 1, i = 2, 3, 4, . . .

and

ni ≤ 10i−1
√

x ≤ ni + 1, i = 1, 2, 3, . . . . (3)

After multiplying the first inequality by 10, we have

10ni−1 ≤ 10i−1
√

x ≤ 10(ni−1 + 1). (4)

Notice that by inequality (3), ni and ni + 1 are consecutive positive integers

bounding 10i−1
√

x. From inequality (4), the positive (non-consecutive) integers

10ni−1 and 10(ni−1+1) also bound 10i−1
√

x. Since there are no integers between

ni and ni + 1, we must have

10ni−1 ≤ ni < ni + 1 ≤ 10(ni−1 + 1).

Therefore

10ni−1 ≤ ni ≤ 10i−1
√

x ≤ ni + 1 ≤ 10(ni−1 + 1).

Specifically, 10ni−1 ≤ ni and inductively, 10i−1n1 ≤ ni.

So at last we have

√
x− ri ≤

(
1

4 + 8ni

) (
1

10i−1

)
︸ ︷︷ ︸

Inequality (2)

<

(
1

8ni

) (
1

10i−1

)
≤

(
1

8n1

) (
1

102i−2

)
︸ ︷︷ ︸

since 10i−1n1≤ni

.

Proof of Theorem 2

Let n and k be positive integers, and suppose A is a real number in the interval

[n(n + k), (n + 1)(n + 1 + k)]. The unique positive solution, R, of x(x + k) = A

is given by the quadratic formula:

R =
−k +

√
k2 + 4A

2
.

Now define f as a function of A by

f(A) =
−k +

√
k2 + 4A

2
−

(
n +

A− n(n + k)
2n + 1 + k

)
.
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Notice that f(A) is the error made in approximating the unique positive solution

of x(x + k) = A by n + A−n(n+k)
2n+1+k .

f is a differentiable function of A on (n(n + k), (n + 1)(n + 1 + k)) and

f ′(A) =
1√

k2 + 4A
− 1

2n + 1 + k
.

The only critical point of f occurs where f ′(A) = 0. This is the point where

A = 1
4 (1 + 2k + 4n + 4kn + 4n2) and f(x) = 1

4+4k+8n .

Now f ′′(A) = −2(k2 +4A)−3/2 and therefore the graph of f is concave down

on (n(n + k), (n + 1)(n + 1 + k)). Furthermore

f(n(n + k)) = f((n + 1)(n + 1 + k)) = 0.

So f is nonnegative on [n(n+k), (n+1)(n+1+k)] and attains a unique maximum

at the point
(

1
4 (1 + 2k + 4n + 4kn + 4n2), 1

4+4k+8n

)
.

Mathematica Code

The Mathematica code for the algorithm is given here.

K[n_,x_]:= n + (x-n^2) / (2n+1)

SQR[x_,n_,M_]:=Module[{xx,nn,rr},

nn=n;

Do[

xx=K[nn,10^(2i-2) x];

rr=10^(1-i) xx;

nn=Floor[10 xx];

If[(nn+1)^2 < 100^i x, nn=nn+1], {i,1,M-1}];

rr=K[nn,10^(2M-2) x] 10^(1-M);

Print[rr]]

To produce the results in Table 2, enter SQR[2,1,1], SQR[2,1,2], etc.
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