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As far as integration techniques go, the tabular
method of integration by parts is underrated.
In this presentation, I will discuss some of the
less familiar applications and consequences of
integration by parts and the tabular method.



The Integration by Parts Formula
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or
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When using the integration by parts formula,
one must choose u and dv wisely.

e 1 Mmust be easy to differentiate.

e v must be easily obtained from duv.

e Ideally, vdu must be simpler than u dv.

Choosing u and dv wisely is very difficult for
beginners.



As a general rule of thumb, our students could
use the acronym LIATE.

L - Logarithmic

I - Inverse trigonometric

A - Algebraic

T - Trigonometric

E - Exponential

When using the integration by parts formula,
choose u as the type of function that appears
first in LIATE.



Example

Evaluate the indefinite integral /:z:3|n:13d:13.

According to LIATE we choose v = Inz and
dv = 23 dx.
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Instead of LIATE, some people prefer to use
LIPTE, where the P stands for polynomial.



Application - Exact DEs

To solve exact differential equations, we inte-
grate, by parts when necessary.

Example

Deydr + (22 — 1) dy = 0
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Application - Linearizations

f@) = 1@+ [ f@a
uw= f'(t), dv = dt

du = f"(t) dt, v=—(x —1)

f@) = 1@ + (@@ —a)+ [ (o— ") dt

(z —a)

f(x) = f(a) + f'(a)(z —a) + f(2) 5




T he Tabular Method
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signs w and du/dx dv/dx and [dv
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Of course, the tabular method is more useful
for problems requiring repeated integration by
parts.



Example

3

Use the tabular method to evaluate /:z: COSz dx.

signs w and du/dx dv/dx and [ dv
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Repeated integration by parts and the tabu-
lar method offer an elementary approach to a
number of more advanced topics.



1
Consider the definite integral /o e Ydx.

signs w and du/dx dv/dx and [dv
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Upon evaluating at 1 and O, we get
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e IS irrational.

Proof: Suppose e = a/b where a and b are
positive integers and choose n > max{b,a/b}.
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Multiply by e and rearrange

1 1 1 Lg™ _ .
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Multiply by n!

Left side = nl(e—1)—n! (1 + % + % + ...+ %)

— an integer

1 e
Right side = e/ e Tdx <
J 0 n-+1




In addition to showing that e is irrational, we've
also shown that

: 1 1 1
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We can use repeated integration by parts to
find sums of other series. We'll come back to
this idea.



Taylor’s Polynomials

Using repeated integration by parts, we can
generalize our notion of linearizations.

As before, we start with

@) = 1@+ [ f@a



signs w and du/dx dv/dx and [ dv
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Upon evaluating at  and a, we get
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It follows that
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where z is between a and z«.



Of course, there was nothing special about 5.
As long as f has enough continuous deriva-
tives, we could continue the process.

This method of deriving Taylor polynomials
(and proving Taylor’'s Theorem) is perhaps more
natural than the traditional approach.



Tabular integration by parts can also be used
to illustrate a number of other practical and
theoretical results.

D. Horowitz, Tabular Integration by Parts, Col-
lege Mathematics Journal, 21 (1990), pp. 307—
311.

Available at the website MAA Calculus Articles
for Your Students.



Modified Tabular Method

If the tabular method is modified, it can be
used for a number of integrals that would not
normally be considered “tabular type”.

For example, consider the definite integral

/01(1 — 22)3dz.






Upon evaluating at O and 1, we get

1 23. 3!
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and it takes only a little leap of faith to con-
Clude

/01(1 — 22 dx =

2N .. nl

1-3-5---(2n+1)

Another good example for the modifed method
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IS/O(:UIn:U) d:z:=(n+1)n_|_1.




Sums of Series

It is easy to see that

1 T In 2
/ dr = —.
0 14 22 2

However, if we start with

uw= (14221 and dv = z dx,

we can use the modified tabular method to
show that

1
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Instead of using repeated integration, we can
streamline the approach.

Define the sequence {an} where
2n 1

i _/ (1—|—:1:2)n

Upon integrating by parts, we have

1
an = n2n+1 —|— an—l—l'

Repeated use of this formula gives

n2 (& 1
2 =\ &y et ) Tor

n=1
and our result follows pretty easily from here.



Some other sums

1 s 1
n2= 2 t nzzzl 2n=lp(n+ 1)(n + 2)

e Integral:
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1 & (2n)!

d—1= > 2 (any2sn where ¢ = (1 + /5)/2
e Integral:
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S~ n!
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e Integral:
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By using repeated integration by parts, infinite
series can be introduced in an elementary way.

A good research problem for students is to use
repeated integration to find an infinite series
coinciding with a certain definite integral.
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