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The falling ladder problem is a well-known, related-rates problem that is famous
for its paradoxical solution. In this problem, the top of a ladder of length L
slides down a vertical wall as the base of the ladder moves away from the wall
at a constant speed, v0 (see Figure 1). Students are asked to find the speed of
the top of the ladder at certain heights as it falls. The familiar paradox is that
the related-rates approach to solving the problem eventually gives physically
unrealistic solutions—the speed approaches infinity as the top approaches the
ground.

The resolution of the paradox comes by recognizing that the top of a real
ladder will inevitably come away from the wall at some point during its descent.
The related-rates approach will accurately model the motion while the ladder
is in contact with the wall. After the ladder disengages, however, it must be
treated as a physical pendulum whose pivot moves along the ground.

A number of authors have shared their perspectives on the falling ladder
problem [2, 3, 5, 7]. It is not our goal to improve upon their treatments of the
paradox, but rather to take the solution a few steps further. In addition, we
offer some experimental support for the solution and introduce several other
related-rates “paradoxes” that are found in modern calculus textbooks.

1 Falling ladder models

We begin by summarizing the falling ladder models presented by Scholten and
Simoson [7]. In contrast to their analysis, we take θ to be the angle the top of
the ladder makes with the vertical (0 ≤ θ ≤ π/2).

With the origin at the point of intersection of the wall and the ground, let
b0 ≥ 0 be the initial x-coordinate of the base of the ladder. While the ladder is
in contact with the wall, we have the following in-contact (IC) model:

sin θ =
b0 + v0t

L
, θ̇ =

v0
L cos θ

, θ̈ =
v2
0
sin θ

L2 cos3 θ
,

where the dot denotes differentiation with respect to time t. Notice that θ̇ → ∞
as θ → π/2−, as the paradox contends. When the ladder is away from the wall,
falling as a physical pendulum, torque considerations and Newton’s 2nd Law
give the following not-in-contact (NIC) model:

θ̈ =
3g sin θ

2L
,
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Figure 1: The falling ladder

where air resistance is being ignored and g is the acceleration due to the force of
gravity. (The ladder’s moment of inertia is taken to be I = mL2/3. For details
of the derivation of the NIC model, see the article by Kapranidis and Koo [5]
or by Scholten and Simoson [7].)

As long as the angular acceleration in the NIC model is greater than the
angular acceleration in the IC model, the ladder will remain in contact with
the wall. At the moment the angular accelerations are equal, the ladder will
disengage from the wall. Therefore the critical angle, θc, is the angle at which

θ̈IC =
v2
0
sin θ

L2 cos3 θ
=

3g sin θ

2L
= θ̈NIC.

Solving for θ gives

θc = cos−1





3

√

2v2
0

3gL



 ,

which in turn gives the critical height

yc = L cos θc =
3

√

2L2v2
0

3g
. (1)

Before the top of the ladder reaches the critical height yc, the IC model applies.
Once it has fallen to the height yc, the NIC model takes over. If the initial
height is less than yc, or if 2v

2

0
/(3gL) ≥ 1, the ladder will come away from the

wall immediately as the motion starts.
At this point, previous articles on the falling ladder problem go on to discuss

the numerical solution of the NIC model [7] or they proceed in other directions
[2, 3, 5]. It seems to have gone unnoticed that a formula for ẏ, which is after all
what the problem typically asks for, can be derived from the NIC model.
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Letting tc = (L sin(θc) − b0)/v0 be the time at which the critical angle is
achieved, the NIC model initial-value problem is:

θ̈ =
3g sin θ

2L
, θ(tc) = θc, θ̇(tc) =

v0
L cos θc

.

The 2nd-order differential equation can be reduced to a 1st-order separable
equation by means of the substitution u = θ̇, u du/dθ = θ̈. This gives

u
du

dθ
=

3g sin θ

2L
, u(θc) =

v0
L cos θc

.

After separating variables, integrating, and applying the initial condition, we
find that

u(θ) = θ̇(θ) =

√

v2
0

L2
sec2 θc +

3g

L
(cos θc − cos θ),

which reduces to
θ̇ =

√
A−B cos θ, (2)

where

A =
3

4

(

12v0g

L2

)2/3

and B =
3g

L
.

Since the y-coordinate of the top of the ladder is given by y = L cos θ, it follows
that ẏ = −L sin(θ) θ̇ or

ẏ = −L sin θ
√
A−B cos θ. (3)

These formulas describe the ladder’s motion when it is away from the wall, i.e.,
when θc ≤ θ ≤ π/2. As the top of the ladder hits the ground, its speed is given
by

|ẏ(π/2)| = L
√
A =

√
3 3

√

3v0gL/2. (4)

If we are willing to integrate numerically, we can also determine when and
where the top of the ladder will hit the ground. Indeed, equation (2) can be
used to determine the time t required to reach the angle θ:

∫ θ

θc

dφ√
A−B cosφ

= t− tc.

This gives

tend = tc +

∫ π/2

θc

dφ√
A−B cosφ

,

and it follows that the top of the ladder will land at the point where its x-
coordinate is

xend = b0 + v0tend − L.

As one might expect, this expression for xend can be written in a way that does
not depend on the initial position of the ladder:

xend = L sin(θc)− L+ v0

∫ π/2

θc

dφ√
A−B cosφ

. (5)
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Trial L (m) v0 (m/s) Measured yc (m) Theoretical yc (m) % Error

1 1.546 0.84 0.505 0.487 3.7%
2 1.546 0.80 0.490 0.472 3.8%
3 1.394 0.86 0.493 0.462 6.7%
4 1.394 0.80 0.459 0.440 4.3%
5 0.932 0.79 0.339 0.334 1.5%

Table 1: Typical results of the falling ladder experiment

2 Example and experiment

In their article, Scholten and Simoson [7] analyzed a falling ladder problem
taken from a popular 1994 calculus textbook. We take our example from a 2010
edition of a different calculus text [8]. In this example, L = 13 ft, v0 = 8 ft/s,
and students are asked to find the speed of the top of the ladder when its height
is 5 ft. Using equation (1), we find that the critical height, yc, of the ladder is
approximately 6.085 ft. Therefore, at the 5-foot mark, the ladder will be falling
as a pendulum, and the expected, related-rates approach to the problem does
not apply. Assuming that the initial height was greater than yc, equations (3),
(4), and (5) give

ẏ
∣

∣

y=5
≈ −18.375 ft/s, ẏ(π/2) ≈ −29.602 ft/s, xend ≈ 0.670 ft.

In contrast to 18.375 ft/s, the textbook gives 19.2 ft/s as the speed when y = 5 ft.
As part of a project for a two-year college STEM competition, the authors

of this article carried out a falling ladder experiment. Boards of various lengths
were used as ladders, and a piece of chalk was affixed to the top of each board.
With a board leaning against a wall, the bottom was pulled away at a constant
rate as determined by a sonic ranging device. The chalk left a mark on the wall
indicating where the top disengaged. For the purposes of the experiment, g was
measured to be (9.72± 0.03)m/s2. Some typical results are shown in Table 1.

Although the details are not included here, we found that our results are
within experimental error. Nonetheless, it is curious that the theoretical predic-
tions consistently underestimated the observed values of yc. A reasonable ex-
planation for the discrepancies comes from air resistance. Because solid, rather
wide, boards were used as ladders, the negligibility of air resistance is question-
able. In the NIC model, air resistance would work to decrease θ̈. This, in turn,
would cause the intersection point of the graphs θ̈IC and θ̈NIC to shift left,
decreasing θc and increasing yc. To minimize the effect of air resistance, future
experimenters may wish to use heavy ladders with small areas.

3 Other related-rates paradoxes

While the falling ladder paradox has generated a great deal of interest, there are
other related-rates paradoxes that have received little, or no, attention. We close
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by mentioning three such problems, which we hope might provide inspiration for
future projects. Even though these problems are quite common in textbooks,
we cite only one reference for each as an example.

• Melting snowball problem [1]: In this problem, a melting sphere of ice loses
volume at a constant rate. Students must find the rate of change of the
radius when the sphere reaches a particular size. Paradoxically, the radius
shrinks infinitely fast as the radius approaches zero. (A small bug on the
surface would be in for quite a ride!) Some authors cleverly get around
this paradox by placing a spherical iron ball in the center of their snowball
[4].

• Leaking conical tank [9]: A downward pointing conical tank filled with
water loses volume at a constant rate. Students must find the rate of
change of water level when the water is at a particular depth. As above,
the rate approaches −∞ as the water level drops to zero.

• Boat/bobber problem [6]: In this problem, a boat or a fisherman’s bobber is
pulled in at a constant rate toward a dock above the water level. Students
are asked to find the speed of the boat/bobber as it approaches the dock.
As in the falling ladder problem, the related-rates approach predicts speeds
tending to infinity. However, as any fisherman can attest, the floating
object will come out of the water and swing as a shrinking pendulum at
some point as it approaches the dock. (Incidentally, we believe that the
boat in the example problem is too close to the dock for related rates to
apply.)

Abstract

The related-rates falling ladder problem is well-known calculus exercise

with a paradoxical twist. We revisit the problem and derive a closed-form

solution. We also describe experimental support for the solution and

discuss some related paradoxes that may tempt future experimenters.
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