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E. Ray Bobo considered the sequence {a(n)}∞n=2, where a(n) is the least positive inte-
ger such that
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in a Classroom Capsule in this JOURNAL [1]. He showed that a(n) takes one of three
values, bnec − 2, bnec − 1, or bnec, where b·c denotes the least integer/integer floor
function. He took special interest in the n for which a(n) = bnec. Let

B = {n : a(n) = bnec}

= {4, 11, 18, 25, 32, 36, 43, 50, 57, 64, 71, 75, 82, 89, 96, 103, 114,

121, 128, 135, 142, 146, 153, 160, 167, 174, 185, 192, 199, . . .}.

We refer to the elements of B as the Bobo numbers.
While Bobo did not rule out the possibility that a(n) = bnec − 2, his numerical

experiments (through n = 2115) yielded no examples. Furthermore, in his analysis of
B, Bobo observed that the gaps between consecutive elements formed an intriguing
pattern of 4s, 7s, and 11s. At the end of his article, he posed several questions, two of
which we consider here:

(A) Does the pattern in the gaps of B persist, or does chaos eventually take over?
(B) Is a(n) = bnec − 2 impossible?
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In The On-Line Encyclopedia of Integer Sequences [3], the sequence A103762 is
essentially {a(n)}∞n=2. The posted comments hint at the same questions as those posed
by Bobo. For the most part, we answer these questions using elementary methods
only. In fact, a central theme will be the application of standard integral approximation
techniques encountered in beginning calculus.

Ruling out a case
We begin with Question (B): Can a(n) = bnec − 2? For a positive integer n ≥ 2, we
apply the midpoint rule for numerical integration using subintervals of length one to

approximate
∫ bnec− 3
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1
x dx (see Figure 1). Because the graph of y = 1

x is concave up in

the first quadrant, the midpoint rule underestimates the integral. It follows that
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Putting together these inequalities, we have
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whenever n ≥ 2; therefore, a(n) = bnec − 2 is indeed impossible.
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Figure 1. The midpoint rule approximation of 1
x .
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There remain only the two possibilities, a(n) = bnec − 1 or a(n) = bnec. Numer-
ical experiments indicate that both occur frequently, but a(n) = bnec for only about
1
7 of the positive integers. The fraction 1

7 is probably a slight overestimate, but we are
getting ahead of ourselves.

Fractional parts must have the right size
Turning to Question (A), our goal is to determine the possible gaps in B and estimate
their frequencies. We begin by finding a lower bound for
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which provides a clue for when a(n) = bnec (i.e., when n is a Bobo number). A useful
lower bound is found by approximating

∫
bnec

n
1
x dx with a left-endpoint Riemann sum

over subintervals of length one:∫
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From a table of values of ln
(
bnec

n

)
, we observe that this lower bound is especially

small (and hence a(n) is more likely equal to bnec than bnec − 1) whenever bnec
and its predecessor, b(n − 1)ec, are as close together as possible. Writing {x} for the
fractional part of x , we have

bnec = b(n − 1)e + ec = b(n − 1)ec + 2+ b{(n − 1)e} + {e}c.

Recognizing that b{(n − 1)e} + {e}c can only be 0 or 1, we can rewrite this as

bnec =

{
b(n − 1)ec + 2 if {(n − 1)e} + {e} < 1,

b(n − 1)ec + 3 if {(n − 1)e} + {e} ≥ 1.
(2)

Notice that bnec and b(n − 1)ec are as close as possible in the first case, precisely
when {(n − 1)e} < 1− {e} ≈ 0.2817. Using (2), it is routine to show that the inequal-
ity {(n − 1)e} < 1− {e} is a necessary and sufficient condition to guarantee

ln

(
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n

)
< ln

(
b(n − 1)ec

n − 1

)
.

Therefore, the smallness of the lower bound in (1) coincides with the smallness of
{(n − 1)e}. However, the inequality {(n − 1)e} < 1− {e} does not guarantee that n is
a Bobo number. Indeed, if we define S by

S = {n : {(n − 1)e} < 1− {e}}

= {4, 8, 11, 15, 18, 22, 25, 29, 32, 36, 40, 43, 47, 50, 54, 57,

61, 64, 68, 71, 75, 79, 82, 86, 89, . . .},

we see that S contains elements that B does not. On the other hand, we show next that
B ⊂ S . Our proof requires the following technical lemma.
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Lemma. For any positive integer n,
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Proof. The lemma follows by using the trapezoidal rule with subintervals of length
one to approximate

∫
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which decreases for n ≥ 9 and has limit 1. So the lemma holds when n ≥ 9 and it can
be verified directly for n = 1, . . . , 8.

Proposition 1. With B and S as defined above, B ⊂ S . In other words, if n is a
Bobo number, then {(n − 1)e} < 1− {e} ≈ 0.2817.

Proof. Suppose that n is a Bobo number. By definition, a(n) = bnec and it follows
that
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< 1.

By (2), we know that bnec − 1 is either b(n − 1)ec + 1 or b(n − 1)ec + 2. By the
lemma, the latter is impossible. So bnec − 1 = b(n − 1)ec + 1 and, again from (2),
we see that {(n − 1)e} < 1− {e}.

Proposition 1 sheds some light on the structure of the set of Bobo numbers, but is
not sufficient to provide a satisfying answer to Question (A). Before more progress
can be made, another important observation is required: In order for n to be a Bobo
number, {(n − 1)e} must be small, but not too small. The next proposition quantifies
this idea.

Proposition 2. For x ≥ 1, let

f (x) = xe + 1− e − x exp

(
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)
.

If n is a Bobo number, then {(n − 1)e} > f (n). Specifically, for any n ∈ B,

{(n − 1)e} > 11− 4e ≈ 0.1269.

Proof. Suppose that n is a Bobo number. By the definition and the trapezoidal rule
approximation of

∫
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we have
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n exp
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> b(n − 1)ec + 1 = (n − 1)e + 1− {(n − 1)e},

which establishes the first part of the proposition. The second part can be verified
directly for the Bobo numbers 4, 11, 18, 25, 32, and 36. For Bobo numbers greater
than 36, the second part follows from the fact that f is an increasing function and that
f (36) > 11− 4e.

We now take our first big step toward answering Question (A).

Theorem 1. Suppose that n is a Bobo number and that k is a positive integer. If

0.1548 ≈ 3e − 8 ≤ {ke} ≤ 9− 3e ≈ 0.8452,

then n + k is not a Bobo number.

Proof. The proof requires only our two propositions and some arithmetic with frac-
tional parts. Suppose that n is a Bobo number. Since 1− {e} = 3− e, it follows from
Propositions 1 and 2 that

11− 4e < {(n − 1)e} < 3− e.

With the given conditions on k, this inequality can be combined with the inequality in
the theorem statement to give

(11− 4e)+ (3e − 8) < {(n − 1)e} + {ke} < (3− e)+ (9− 3e)

or

3− e < {(n − 1)e} + {ke} < 12− 4e. (3)

At this point, there are two cases. If {(n − 1)e} + {ke} < 1, then it follows that
{(n − 1)e} + {ke} = {(n + k − 1)e} and inequality (3) becomes

3− e < {(n + k − 1)e} < 1.

Therefore, n + k cannot be a Bobo number by Proposition 1.
If instead {(n − 1)e} + {ke} ≥ 1, then {(n − 1)e} + {ke} = {(n + k − 1)e} + 1. In

this case, inequality (3) becomes

1 ≤ {(n + k − 1)e} + 1 < 12− 4e

and n + k cannot be a Bobo number by Proposition 2.

Theorem 1 directly rules out an infinity of gap sizes between Bobo numbers and it
applies equally to nonconsecutive Bobo numbers. For the time being, we are especially
interested that it rules out certain gaps between consecutive Bobo numbers, namely
those of size 1, 2, 3, 5, 6, 8, 9, or 10. Next, we show that consecutive Bobo numbers
must differ by no more than 11. It will follow that the gaps between consecutive Bobo
numbers are restricted to size 4, 7, or 11.
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Gaps cannot exceed 11
Propositions 1 and 2 place necessary conditions on Bobo numbers. It is time for a
sufficient condition. This will lead to our next major theorem.

Proposition 3. Suppose that n is an integer and n ≥ 2. If {ne} > 1
2 (e − 1), then n is

a Bobo number.

Proof. Using the midpoint rule with subintervals of length one to approximate∫ bnec− 1
2
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1
x dx , we have
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If {ne} > 1
2 (e − 1), then the right-hand side is less than ln e = 1. This indicates that n

must be a Bobo number.

With Proposition 3, we can show that for any positive integer n, at least one of the
integers n + 1, n + 2, . . . , n + 11 is a Bobo number. To do so, we will describe condi-
tions on n that make each of {(n + 1)e}, {(n + 2)e}, . . . , {(n + 11)e} exceed 1

2 (e− 1).
The following proposition gives an example of our approach.

Proposition 4. Let L = 1
2 (e − 1) ≈ 0.8591. If n is a positive integer satisfying

0.5494 ≈ L − {6e} < {ne} < 1− {6e} ≈ 0.6903,

then n + 6 is a Bobo number.

Proof. Since {6e} is slightly less than 0.3097, the conditions on {ne} imply that {ne} +
{6e} = {(n + 6)e}. Therefore, after adding {6e} across the inequality in the proposi-
tion, we have L < {(n + 6)e} < 1. By Proposition 3, we conclude that n + 6 must be
a Bobo number.

Proposition 4 is summarized in row 7 of Table 1. The additional ten results in the
table, corresponding to ten similar propositions, can be verified in the same way. No-
tice that the intervals described in Table 1 cover [0, 1], with some overlap. This leads
to the following theorem.

Theorem 2. For any positive integer n, there is a k = 1, 2, . . . , 11 such that (n + k)
is a Bobo number. As a consequence, gaps between consecutive Bobo numbers cannot
exceed 11.

Proof. Since {ne} lies somewhere in [0, 1], it corresponds to at least one row of Table
1. Any such row gives a Bobo number that differs from n by no more than 11.

Frequencies of gaps
Taken together, Theorems 1 and 2 establish that 4, 7, or 11 are the only possible gaps
between consecutive Bobo numbers. This provides a partial answer to Question (A),
but we can say much more. For example, Theorem 1 rules out gaps of size 15 between
nonconsecutive Bobo numbers. Therefore, consecutive gaps of 4 and 11, in either or-
der, are impossible. Similarly, consecutive 4-gaps and consecutive 11-gaps are impos-
sible. Theorem 1 also rules out gaps of size 42, so consecutive 7-gaps are limited to
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Table 1. Conditions on n that guarantee n + k is a Bobo number, using L = 1
2 (e − 1).

Row Interval Implication

1 [0, 1− {4e}) ∪ (1+ L − {4e}, 1] ≈ [0, 0.1269) ∪ (0.9860, 1] n + 4 ∈ B
2 (L − {8e}, 1− {8e}) ≈ (0.1129, 0.2537) n + 8 ∈ B
3 (L − {e}, 1− {e}) ≈ (0.1409, 0.2817) n + 1 ∈ B
4 (L − {5e}, 1− {5e}) ≈ (0.2677, 0.4086) n + 5 ∈ B
5 (L − {9e}, 1− {9e}) ≈ (0.3946, 0.5355) n + 9 ∈ B
6 (L − {2e}, 1− {2e}) ≈ (0.4226, 0.5634) n + 2 ∈ B
7 (L − {6e}, 1− {6e}) ≈ (0.5494, 0.6903) n + 6 ∈ B
8 (L − {10e}, 1− {10e}) ≈ (0.6763, 0.8172) n + 10 ∈ B
9 (L − {3e}, 1− {3e}) ≈ (0.7043, 0.8452) n + 3 ∈ B
10 (L − {7e}, 1− {7e}) ≈ (0.8312, 0.9720) n + 7 ∈ B
11 [0, 1− {11e}) ∪ (1+ L − {11e}, 1] ≈ [0, 0.09890) ∪ (0.9580, 1] n + 11 ∈ B

no more than five (five consecutive 7-gaps begin with 36). It is clear that the 4-7-11
pattern observed by Bobo continues. But what about the frequencies of these gaps?

Since e is irrational, the terms of the sequence {{ne}}∞n=1 are uniformly distributed in
the interval (0, 1) (see [2] for an elementary proof). As a consequence, the inequality
in Proposition 3,

{ne} >
1

2
(e − 1) ≈ 0.8591, (4)

is satisfied by roughly 14.09% of the integers in any set of the form {1, 2, . . . , N } for
sufficiently large N . While the converse of Proposition 3 is not true—the Bobo number
36 is a counterexample—it is almost true in the following sense. Using Propositions 1
and 2, we can show that when n is a Bobo number,

{ne} = {(n − 1)e} + {e} > f (n)+ {e} = f (n)+ e − 2, (5)

where f is defined in Proposition 2. Since the numbers {ne} are uniformly distributed
in (0, 1) and limn→∞ ( f (n)+ e − 2) = 1

2 (e − 1), most Bobo numbers will eventually
satisfy (4). It follows that about 14.09% of the positive integers are Bobo numbers. As
mentioned earlier, this is a bit less than 1

7 and agrees closely with numerical experi-
ments (see Table 2).

Table 2. Frequencies of Bobo numbers less than or equal to 5,000,000.

Description Count Relative Frequency

Bobo numbers 704,298 14.086%
Bobo numbers preceding 4-gaps 69,935 1.399%
Bobo numbers preceding 7-gaps 564,434 11.289%
Bobo numbers preceding 11-gaps 69,929 1.399%

Table 1 provides an algorithm for generating Bobo numbers: Choose a positive
integer n, compute {ne}, and use the table to obtain a Bobo number greater than n.
While this algorithm produces Bobo numbers, it is not guaranteed to produce every
Bobo number. Because Table 1 is based on Proposition 3, the algorithm cannot be
expected to generate Bobo numbers (such as 36) that fail to satisfy (4). However, as
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described above, these anomalous Bobo numbers are rare, let us call them exceptional.
With this in mind, we will disregard the exceptional Bobo numbers and estimate the
frequencies of the 4-7-11 gaps.

According to Table 1, a gap of size 4 from n to a Bobo number is predicted when
{ne} lies in the union of intervals given in row 1. If n is a Bobo number, then it satisfies
(5). This rules out the inclusion of {ne} in the interval [0, 0.1269). Therefore, a gap of
4 from one Bobo number to the next is predicted only when {ne} is between 0.9860
and 1. Since this interval has length 0.014, we should expect that roughly 1.4% of the
positive integers are Bobo numbers preceding a gap of 4.

To predict a gap of 7, we use similar reasoning, focusing on row 10 of Table 1. A
gap of 7 from an unexceptional Bobo number, n, to the next Bobo number is predicted
when n satisfies (4) and {ne} ∈ (0.8312, 0.9720). In other words, {ne} lies between
0.8591 and 0.9720, an interval of length 0.1129. It follows that roughly 11.29% of the
positive integers are Bobo numbers preceding a gap of 7.

A gap of 11 is predicted by using row 11 in Table 1. Reasoning as above, a gap
of this size from one Bobo number, n, to another will occur when {ne} ∈ (0.9580, 1].
However, we must rule out the 11-gaps that occur as a result of consecutive 4s and 7s.
By carefully examining the intervals in rows 1, 10, and 11, we see that a gap of size
11 alone is predicted when {ne} is between 0.9720 and 0.9860. Since this interval has
length 0.014, we should expect that roughly 1.4% of the positive integers are Bobo
numbers preceding a gap of 11.

The frequencies estimated above agree closely with numerical experiments given
in Table 2. In response to Question (A), it appears that chaos does not eventually take
over. Nonetheless, an exact formula for the nth Bobo number is, alas, beyond our reach.
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Summary. Any sum of reciprocals of consecutive natural numbers must eventually exceed 1.
The final term of such a sum is a function of the initial term. In a 1995 Classroom Capsule, E.
Ray Bobo described some properties of that function and posed several questions regarding its
possible values. We answer some of those questions, primarily using integral approximations
from calculus.
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