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With its rich and diverse history, applications, and
divergence proofs, the harmonic series provides the in-
structor with a wealth of opportunities. The presenters
will describe how they have taken advantage of these
opportunities to engage calculus students. The presen-
tation will focus mostly on unusual proofs, applications,
and results.
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Notation

• Harmonic Series:
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• nth partial sum of the harmonic series:
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• Hn is the nth harmonic number.
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The harmonic series diverges
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ln(n + 1) < Hn

3



Student explorations

• How does the result change if right end-

points are used instead of left endpoints?

• How does the result change if trapezoids

are used instead of rectangles?

• Why are results like this important?
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The harmonic series diverges very slowly

How many terms of the harmonic series are

required before Hn exceeds 1000?

In order for the inequality

1000 ≤ ln(n + 1) < Hn

to be satisfied, n must be approximately 10435.

To sum the first 10435 terms of the harmonic

series, the most powerful supercomputer would

require 4.5 × 10413 years.

To fully appreciate the magnitude of this num-

ber, compare it to the estimated age of the

universe—a mere 1.5 × 1010 years.
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Student explorations

• How many more terms would be required

before Hn exceeds 1050? How much more

time would be required by the supercom-

puter?

• Find another divergent series. How slowly

does it diverge?

• Can you find a divergent series
∑

an such

that limn→∞ an = 0 and limn→∞ nan = ∞?

What does this say about how slowly your

series diverges?
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Hn is almost never an integer

Suppose n > 1 and choose k such that

2k ≤ n < 2k+1.

Hn = 1 +
1

2
+

1

3
+ · · · + 1

2k
+ · · · + 1

n

Let M be the LCM of all the denominators

except 2k. That is,

M = LCM(1,2,3, . . . ,2k − 1,2k + 1, . . . , n).

Note that M has a factor 2k−1 but not 2k.
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Multiply M and Hn.

M · Hn = M +
M

2
+

M

3
+ · · · + M

2k
+ · · · + M

n

= integer +
M

2k
+ integer.

Since M/2k is not an integer, M ·Hn also cannot

be an integer. Thus, Hn is not an integer.
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The harmonic series diverges

The Fibonacci numbers are defined as follows:

f0 = 1,

f1 = 1,

fn+1 = fn + fn−1, n = 1,2,3, . . .

It is easy to show that

lim
n→∞

fn+1

fn
= φ =

1 +
√

5

2

or

lim
n→∞

fn−1

fn+1
= 1 − 1

φ
≈ 0.382
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∞
∑
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≥ 1 + 1
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3 + 2
5 + 3

8 + 5
13 + 8

21 + · · ·

= 1 +
∞
∑

n=1

fn−1

fn+1

Since limn→∞
fn−1
fn+1

6= 0, this last series diverges,

and therefore the harmonic series diverges.
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Student explorations

• Assuming the limit exists, show that

lim
n→∞

fn+1

fn
= φ =

1 +
√

5

2

• Use the previous limit to show that

lim
n→∞

fn−1

fn+1
= 1 − 1

φ

• Does this divergence proof give any indi-

cation of how slowly the harmonic series

diverges?
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Horns, cakes, pails, & glasses

Gabriel’s horn is obtained by rotating the graph

of y = 1/x, 1 ≤ x < ∞, about the x-axis.

• Gabriel’s horn has finite volume but infinite

surface area.

• It is sometimes said that the horn can be

filled with paint, but cannot be painted.

12



Gabriel’s wedding cake is a discrete analogue

of Gabriel’s horn.

Let f be the following piecewise-defined func-

tion:

f(x) =































1, 1 ≤ x < 2
1/2, 2 ≤ x < 3

. . .
1/n, n ≤ x < n + 1

. . .

Now rotate the graph of y = f(x), 1 ≤ x < ∞,

about the x-axis.
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• The cake has volume

V =
∞
∑

n=1

π

(

1

n

)2

(1) = π
∞
∑

n=1

1

n2
=

π3

6
.

• The cake has lateral surface area

A =
∞
∑

n=1

2π

(

1

n

)

(1) = 2π
∞
∑

n=1

1

n
.

• Since the harmonic series diverges, Gabriel’s

wedding cake is a cake you can eat, but

cannot frost.
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A paradoxical paint pail...

Define f on [0,1] as follows: f(x) = 1 if x = 0

or if x = 1/n for n a positive integer, and on

the interval ( 1
n+1, 1

n), the graph of f is a spike

of length 1/n.

1
1

2

1

3

1

x

Since the harmonic series diverges, the arc length

is infinite.
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Rotate the graph about the x-axis to generate

a solid that

• is bounded,

• has infinite surface area, and

• has finite volume.

Notice that the derivative of the paint-pail func-

tion has infinitely many discontinuities.
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At this point, Gabriel has blown his horn, got-

ten married, and painted his house.

Now it’s Miller time!

Introducing Gabriel’s beer glass...
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For 0 ≤ x ≤ 2, define the function f as follows:

f(x) =











2 + x cos
π

x
, 0 < x ≤ 2

2, x = 0

f is continuous on [0,2] and f ′ is continuous

on (0,2].

For any natural number n, the vertical distance

from the point (1/n,2) to the graph of f is 1/n

units. Therefore the graph is at least as long

as
∑ 1

n = ∞.
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Rotate the graph of f about the x-axis.

• The solid is bounded.

• Its surface area is infinite.

• Its volume is finite.

• Its defining function has a continuous deriv-

ative everywhere except at x = 0.
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Student explorations

• Research other paradoxical solids with fi-

nite volume but infinite surface area.

• Can you find a formula for the center of

mass of any finite section of Gabriel’s horn?

• Can you find a piecewise expression for the

paint-pail function?

• Can you find an exact, closed-form expres-

sion for the volume of the beer glass? (You’ll

need some special functions.)
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The harmonic series diverges

Suppose the harmonic series converges with

sum S.

S = 1 +
(

1
2 + 1

3
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+
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1
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+
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1
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)

+
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1
11 + · · · + 1

15

)

+
(

1
16 + · · · + 1

21
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+ · · ·

> 1 + 2
3 + 3

6 + 4
10 + 5

15 + 6
21 + · · ·

= 2
2 + 2

3 + 2
4 + 2

5 + 2
6 + 2

7 + · · ·

= 2
∑∞

n=2
1
n

= 2(S − 1).

The inequality S > 2(S − 1) implies S < 2.
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Student explorations

• Why isn’t this a convergence proof? Doesn’t

it show that the (increasing) sequence of

partial sums is bounded above?

• Find another divergence proof that is based

on grouping terms. How are the proofs

similar? How are they different?
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A connection to Pascal’s Triangle

In the last divergence proof, you may have

recognized some of the numbers as entries in

Pascal’s triangle.

Do similar entries give similar divergence proofs?
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Suppose the harmonic series converges with

sum S.

S = 1 +
(

1
2 + 1

3 + 1
4

)

+
(

1
5 + · · · + 1

10

)

+
(

1
11 + · · · + 1

20

)

+
(

1
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35
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+ · · ·

> 1 + 3
4 + 6

10 + 10
20 + 15

35 + · · ·

= 3
3 + 3

4 + 3
5 + 3

6 + 3
7 + · · ·

= 3
∑∞

n=3
1
n

= 3(S − 3
2).

The inequality S > 3(S − 3
2) implies S < 9

4, but

H5 is already greater than 9
4.
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Record Snowfall in Chicago

How often should Chicagoans expect record

snowfall in January?

Assuming that the amount of snowfall in Janu-

ary of one year has no effect on the amount of

snowfall in January of any subsequent year...
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• The first year is a record year.

• The probability that the 2nd year is a record year
is 1

2
. So, the expected number of record snowfalls

in 2 years is 1 + 1
2
.

• The probability that the 3rd year is a record year is
1
3
. So, the expected number of record snowfalls in

3 years is 1 + 1
2
+ 1

3
.

• In general, after n years of observation, we should
expect Hn record years.
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Inches of Snowfall for January, 1960-2004

Measured at O’Hare Airport-Chicago, IL

(R denotes a record year)
Year Inches Year Inches Year Inches

1960 3.5 R 1975 3.5 1990 3.2
1961 3.0 1976 10.0 1991 11.1
1962 18.6 R 1977 7.2 1992 5.6
1963 16.8 1978 21.9 1993 15.2
1964 1.6 1979 34.3 R 1994 14.2
1965 11.7 1980 6.2 1995 13.1
1966 15.5 1981 2.0 1996 5.9
1967 25.1 R 1982 22.9 1997 no data
1968 10.4 1983 5.0 1998 no data
1969 3.7 1984 17.2 1999 29.6
1970 9.5 1985 18.9 2000 13.6
1971 10.0 1986 6.9 2001 1.5
1972 7.6 1987 17.3 2002 15.5
1973 0.5 1988 5.4 2003 4.3
1974 7.4 1989 0.4 2004 14.6

Chicago snowfall data obtained from
the Illinois State Climatologist Office.
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Number of Illinois Tornadoes, 1956-2004

(R denotes a record year)
Year Tornadoes Year Tornadoes Year Tornadoes

1956 28 R 1973 63 R 1990 50
1957 42 R 1974 107 R 1991 32
1958 27 1975 46 1992 23
1959 37 1976 27 1993 34
1960 40 1977 33 1994 20
1961 34 1978 13 1995 76
1962 13 1979 12 1996 62
1963 11 1980 14 1997 29
1964 7 1981 33 1998 99
1965 28 1982 35 1999 64
1966 11 1983 14 2000 55
1967 40 1984 34 2001 21
1968 8 1985 15 2002 35
1969 10 1986 22 2003 120 R
1970 17 1987 22 2004 80
1971 16 1988 20
1972 30 1989 15

Illinois tornado data obtained
from The Disaster Center.
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Student explorations

• Use your calculator to generate random

numbers between 0 and 1. Keep track

of record-breaking numbers. After n num-

bers, how many records did you find?

• About how many numbers would you ex-

pect to have to generate to obtain 10 records?

• Experiment with other sets of data.
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The Collector’s Problem

If there is one toy per box, how many boxes

of cereal should you expect to purchase if you

want to collect a complete set of 6 toys?

Assuming that there is exactly one toy per box

and that each toy is equally likely...
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• The probability of getting one toy with the

first box purchased is 1.

• Given that you have one toy, the probail-

ity of getting a second (non-duplicate) toy

with your next purchase is 5/6. So, the

expected number of boxes you would need

to purchase is 6/5.

• Given that you have two distinct toys, the

probability of getting a third (non-duplicate)

toy with your next purchase is 4/6. So, the

expected number of boxes you would need

to purchase is 6/4.

31



If we continue with this reasoning, you should

expect to have a complete set after

1 +
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)

= 6H6 purchases.

In general, the expected number of purchases

necessary to complete one set of n objects is:

n

(

1 +
1

2
+

1

3
· · · + 1

n

)

= nHn
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Sums of partial sums

n−1
∑

k=1

Hk + n = nHn

Proof
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n−1
∑

k=1

Hk + n

Fit the shapes together for n rows of Hn

(Reference: Proofs Without Words II: More Exercises in Visual

Thinking, Roger B. Nelsen)
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Sums of partial sums II

∞
∑

n=1
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=
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etc.
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