Math 240 - Quiz 2 January 26, 2023

Name Key Score

Supply explanations if necessary.

1. (3 points) Solve the following initial value problem:

$$y(x) = \int \frac{10}{\chi^{2}+1} d\chi$$

$$= \int \sqrt{\chi^{2}+1} d\chi$$

$$y(0) = 0 = 10 \text{ TAN}'(0) + C$$

= 0 + C \Rightarrow C= 0

2. (3 points) Suppose you are sketching the direction field for the differential equation

$$x^2 \frac{dy}{dx} + 3xy^3 = 4.$$

(a) What is the slope of the solution curve passing through (2,3)?

$$\frac{dy}{dx} = \frac{4 - 3xy^{3}}{x^{2}} \qquad \frac{dy}{dx} \Big|_{(a,3)} = \frac{4 - 3(a)(3)^{3}}{(a)^{2}} = \frac{-158}{4}$$

(b) Find a point through which you would not expect a solution curve to exist. Say why.

$$f(x,y) = \frac{4-3xy^3}{x^2}$$

FIS NOT CONTINUOUS WHEN X=0.

FISOM OUR EXISTENCE THEOREM, I WOULD

NOT EXPECT A SOL'N THROUGH Turn over.

ANY POINT WHERE X = 0, e.g. (0,0).

3. (4 points) Analyze each initial value problem and determine whether we could expect a unique solution, more than one solution, or no solution to exist through the given point.

(a)
$$\frac{dy}{dx} - x^2y = \sin^3 x$$
, $y(\pi) = 2$

$$f(x,y) = x^{2}y + sin^{3}x$$

$$f_{y}(x,y) = x^{3}$$

THESE ARE CONTINUOUS EVERYWHERE

THERE IS A UNIQUE SOLUTION

THROUGH ANY POINT.

(b)
$$y \frac{dy}{dx} = e^x$$
, $y(1) = 0$

$$f(x,y) = \frac{e^x}{y}$$

THIS IS NOT CONTINUOUS

THROUGH (1,0).