$\frac{\mathbf{Math}\ \mathbf{233}\ \textbf{-}\ \mathbf{Test}\ \mathbf{2}}{\mathbf{March}\ 13,\ 2025}$

Name	
	Cooro

Show all work to receive full credit. Supply explanations where necessary.

1. (7 points) Let $\vec{r}(t) = (1 + \cos t)\hat{i} + 3\sin t\hat{j} + t^2\hat{k}$. Find $\hat{T}(t)$ and then compute $\hat{T}(0)$.

2. (7 points) Let $\vec{r}(t) = 6\sin 2t \,\hat{\imath} + 6\cos 2t \,\hat{\jmath} + 5t \,\hat{k}$. Find $\hat{N}(t)$.

3. (8 points) The acceleration vector of a moving particle is given by $\vec{a}(t) = t\,\hat{\imath} + 4\,\hat{\jmath} - 32\,\hat{k}$. Suppose we also know that $\vec{v}(0) = 3\,\hat{\imath} + \hat{\jmath} - \hat{k}$ and $\vec{r}(0) = 2\,\hat{\jmath} + 4\,\hat{k}$. Find $\vec{r}(6)$.

4. (10 points) Starting from t = 0, find the arc length parameter s for the given vector-valued function. After you have found s, solve for t in terms of s.

$$\vec{r}(t) = e^t \cos t \,\hat{\imath} + e^t \sin t \,\hat{\jmath} + e^t \,\hat{k}$$

- 5. (9 points) A projectile is fired from the ground with an initial speed of $500\,\mathrm{m/sec}$ at an angle of elevation of 45° . To get credit for this problem, you must set up and use the vector-valued function that gives the position of the projectile at time t. (Use $g=9.8\,\mathrm{m/sec^2}$.)
 - (a) When and how far away will the projectile strike the ground?

(b) How high overhead will the projectile be when it is 5 km downrange?

(c) What is the maximum height reached by the projectile?

6. (3 points) An object is moving in such a way that its position at time t is given by $\vec{r}(t) = (1+3t)\hat{\imath} + (t-2)\hat{\jmath} - 3t\hat{k}$. Write the acceleration vector in the form $\vec{a}(t) = a_T \hat{T}(t) + a_N \hat{N}(t)$. Explain your answer.

- 7. (3 points) The speedometer of your car reads a steady $45\,\mathrm{mph}$. Could you be accelerating? Explain.
- 8. (10 points) On your formula card, you can find the curvature formula for a curve defined in the xy-plane by y = f(x). Let's derive and use that formula.
 - (a) First, suppose you are given the equation y = f(x). Briefly argue that the vector-valued function $\vec{r}(t) = t \hat{i} + f(t) \hat{j}$ has the same graph.

(b) Show that $\|\vec{r}'(t)\| = \sqrt{1 + (f'(t))^2}$.

(c) With $\vec{r}''(t) = f''(t)\hat{\jmath}$, compute $\kappa = \frac{\|\vec{r}' \times \vec{r}''\|}{\|\vec{r}'\|^3}$ to obtain the formula.

(d) Use the formula to compute the curvature of the graph of $y = \sin 9x$ at the point where $x = \pi/2$.

9. (10 points) Each of these equations defines a surface in 3-space. Briefly describe each surface.

(a)
$$z = y^2 - 1$$

(b)
$$z^2 + y^2 - 4x^2 = 4$$

(c)
$$y = 4x^2 - z^2$$

(d)
$$z^2 + x^2 + 1 = y^2$$

(e)
$$x^2 + 4y^2 + 9z^2 = 1$$

- 10. (4 points) Give an example of an equation of a...
 - (a) cone whose cross sections parallel to the xz-plane are circles.
 - (b) paraboloid opening up the z-axis whose cross sections parallel to the xy-plane are ellipses.
- 11. (6 points) Let $f(x,y) = \sqrt{y x^2 2}$.
 - (a) What is the domain of f?
 - (b) Sketch the level curve f(x, y) = 0.
 - (c) Describe the graph of f.

- 12. (6 points) Let $g(x, y, z) = \frac{x y + z}{2x + y z}$.
 - (a) Evaluate g(1,0,-2).
 - (b) What is the domain of g?
 - (c) Describe the level surface g(x, y, z) = 2.
- 13. (10 points) Find each limit or show that it does not exist.

(a)
$$\lim_{(x,y)\to(1,1)} \frac{x^2 - 2xy + y^2}{x - y}$$

(b) $\lim_{(x,y)\to(0,0)} \frac{x-y}{x+y}$

- 14. (7 points) Consider the limit: $\lim_{(x,y)\to(1,-1)} \frac{xy+1}{x^2-y^2}.$
 - (a) If you were to evaluate the limit along several paths through (1, -1), which path must you definitely avoid and why?

(b) Use the two-path test to show that the limit does not exist.