Math 233 - Quiz 1 (IC)

August 25, 2022

Name Key Score

Show all work to receive full credit. Supply explanations when necessary.

1. (2 points) In component form, $\vec{v} = \langle 8, -15 \rangle$. Find the magnitude of $-3\vec{v}$.

$$\|\vec{v}\| = \sqrt{64 + 335} = \sqrt{889} = 17$$

$$\|-3\vec{v}\| = 3\|\vec{v}\| = 3 \cdot 17 = 51$$

2. (2 points) The vector \vec{u} has initial point P(5, -4) and terminal point Q(-2, 3). The vector \vec{w} has the same direction as \vec{u} but has magnitude 4. Write \vec{w} in component form.

$$\frac{\vec{u}}{\|\vec{u}\|} = \left\langle -\frac{1}{\sqrt{a}} \cdot \frac{1}{\sqrt{a}} \right\rangle$$

$$\overrightarrow{w} = \left\langle \frac{-4}{\sqrt{a}}, \frac{4}{\sqrt{a}} \right\rangle = \left\langle -2\sqrt{a}, 2\sqrt{a} \right\rangle$$

Math 233 - Quiz 1 (TH)

August 25, 2022

Name Key Score

Show all work to receive full credit. Supply explanations when necessary. This quiz is due August 30.

1. (2 points) What is the slope of the vector $\vec{w} = 4\hat{\imath} - 3\hat{\jmath}$? Find a unit vector perpendicular to \vec{w} .

$$\Rightarrow \sqrt{m = \frac{-3}{4}}$$

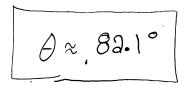
$$M_{\perp} = \frac{4}{3}$$

$$\frac{\vec{\lambda}}{\|\vec{\lambda}\|} = \frac{3 \hat{c} + \frac{4}{5} \hat{J}}{5 \hat{J}}$$

2. (1 point) Write the component form of the 2D vector that has magnitide 6 and makes a 210° angle with the positive x-axis.

$$\hat{V} = 6 \cos 310^{\circ} \hat{i} + 6 \sin 310^{\circ} \hat{j}$$

= $6 \left(-\frac{13}{3} \right) \hat{i} + 6 \left(-\frac{1}{3} \right) \hat{j} = -3\sqrt{3} \hat{i} - 3\hat{j}$


3. (1 point) Find the unit vector whose direction is the opposite of $\vec{v} = 4\hat{\imath} + \hat{\jmath} - 2\hat{k}$.

$$\|\overrightarrow{\nabla}\| = \sqrt{|6+|+4|} = \sqrt{2|}$$

$$\frac{-\overrightarrow{V}}{\|\overrightarrow{V}\|} = -\frac{4}{\sqrt{a_1}} \hat{L} - \frac{1}{\sqrt{a_1}} \hat{J} + \frac{2}{\sqrt{a_1}} \hat{k}$$

4. (2 points) Determine the angle between the vectors $\vec{x} = 6\hat{\imath} - 5\hat{k}$ and $\vec{y} = -\hat{\imath} + 3\hat{\jmath} - 2\hat{k}$. Write your final answer in degrees, rounded to the nearest tenth.

$$\cos \theta = \frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\| \|\vec{y}\|} = \frac{-6 + 0 + 10}{\sqrt{61} \sqrt{14}} = \frac{4}{\sqrt{854}} \approx 0.136877$$

