

Math 216 - Test 3

April 30, 2014

Name _____

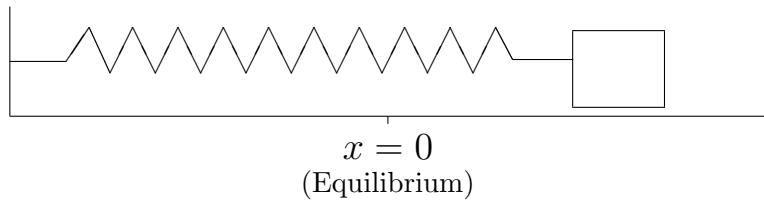
Score _____

Show all work. Supply explanations when necessary. You must work individually on this exam.

1. (10 points) Solve: $y'' - 2y' + y = 0$; $y(0) = 5$, $y'(0) = 10$

2. (14 points) Solve: $y'' - 5y' + 4y = 8e^x + 5x + 2$

3. (14 points) Solve: $y'' + 3y' + 2y = \sin e^x$


4. (10 points) Solve the Cauchy-Euler equation:

$$4x^2y'' + 17y = 0; \quad y(1) = -1, \quad y'(1) = -\frac{1}{2}$$

5. (12 points) The equation $y''' - 6y'' + 11y' - 6y = 3x$ has a particular solution $y_p(x) = -\frac{11}{12} - \frac{1}{2}x$. Find the general solution of the equation

$$y''' - 6y'' + 11y' - 6y = 12x.$$

6. (13 points) A $1/2$ -kg mass is attached to a spring with spring constant 5 N/m . The damping constant for the system is 1 N-sec/m . The mass is moved 2 m to the left of equilibrium (compressing the spring) and released from rest. Find the equation of motion. Write your final result in terms of a single trig function with phase shift. Graph your solution¹ and attach a copy.

¹If you don't have a good plotting program, try one that is available online such as <http://fooplot.com>.

7. (12 points) Consider the equation $x^2y'' - 4xy' + 6y = 0$, $0 < x < \infty$. Do not solve this differential equation.

(a) Verify that $y_1(x) = x^3$ and $y_2(x) = x^2$ are solutions.

(b) Use the Wronskian to show that y_1 and y_2 are linearly independent on $(0, \infty)$.

(c) Use what you've learned in parts (a) and (b) to find the solution of the IVP $x^2y'' - 4xy' + 6y = 0$; $y(1) = 5$, $y'(1) = 16$.

(d) Is your solution in part (c) unique? Explain.

8. (15 points) A forced mass-spring system is governed by the IVP

$$0.2 \frac{d^2x}{dt^2} + 1.2 \frac{dx}{dt} + 2x = 5 \cos 4t; \quad x(0) = \frac{1}{2}, \quad x'(0) = 0.$$

Find the transient and steady-state solutions. Identify which is which.
Also sketch the graph of the equation of motion.