Math 200 - 2nd Final Exam

December 15, 2010

Name _______

Show all work to receive full credit. Supply explanations where necessary. Multiple choice problems are worth $0,\,1,\,$ or 2 points depending on your answer and the work shown.

- 1. Choose the division model that best fits the following problem situation: Sammy's mother made 36 cookies for the school bake sale. She would like to put them into bags that hold 4 cookies each. How many bags does she need?
 - (a) partition
 - (b) missing factor
 - (c) repeated subtraction
 - (d) Cartesian product
- 2. Which one of the following facts illustrates the commutative property of multiplication?
 - (a) (2+x) + y = y + (2+x)
 - (b) $3 \cdot (x+7) + 2 = 3x + 23$
 - (c) 3(2)(x+y) = 2(3)(x+y)
 - (d) (2x+3y)+8=2x+(3y+8)
- 3. What is the value of the digit 5 in the base-eight numeral 6543_{eight}?
 - (a) 5
 - (b) $5 \cdot 64$
 - (c) 500
 - (d) $5 \cdot 512$
- 4. Suppose $A = \{x, y, z\}$, $B \subseteq A$, and n(B) = 3. Which one of the following must be true?
 - (a) $(x, x) \in A \times B$
 - (b) $A \cap B = \emptyset$
 - (c) $n(A \cup B) = 6$
 - (d) B A = 3 x y z
- 5. Which one of these fractions is in lowest terms?
 - (a) 6/111
 - (b) 81/35
 - (c) 51/85
 - (d) 5/40

- 6. Choose the multiplication model that best fits the following problem situation: The graduates walked into the auditorium as a group in ten rows of four. How many graduates were there?
 - (a) Cartesian product
 - (b) repeated addition
 - (c) area/array
 - (d) set partition
- 7. Convert the base-ten numeral 372 to base-four.
 - (a) 11310_{four}
 - (b) 78_{four}
 - (c) 1131_{four}
 - (d) 1032_{four}
- 8. When using the 4-step, problem-solving process which one of these strategies would NOT be considered part of understanding the problem?
 - (a) Reread the problem.
 - (b) State the problem in your own words.
 - (c) Determine what information is not needed.
 - (d) Write an equation.
- 9. Suppose $A = 2^3 \cdot 5^2 \cdot 7 \cdot 13^3$ and $B = 2 \cdot 3 \cdot 5^3 \cdot 13^2$. Find the LCM of A and B.
 - (a) $2 \cdot 3 \cdot 5^2 \cdot 7 \cdot 13^2$
 - (b) $2^3 \cdot 3 \cdot 5^3 \cdot 7 \cdot 13^3$
 - (c) $2 \cdot 5^2 \cdot 13^2$
 - (d) $2^4 \cdot 3 \cdot 5^5 \cdot 7 \cdot 13^5$
- 10. Which one of these numbers is the 1371st term of the following arithmetic sequence?

$$18, 25, 32, 39, 46, 53, 60, 67, \dots$$

- (a) 9608
- (b) 9615
- (c) 9601
- (d) 9597

- 11. Which one of the following is an example of inductive reasoning?
 - (a) 2(3+5) = 2(5+3)
 - (b) A sequence begins with 2,4,6,8. The next term must be 10.
 - (c) If x = 10, then 2x + 3 = 23.
 - (d) Wednesdays are pizza days, so today is a pizza day.
- 12. Let W be the set of all whole numbers. The set A is defined below using set-builder notation. Which one of the given sets is equal to A?

$$A = \{x \,|\, x = 2n \text{ where } n \in W \text{ and } n < 2\}$$

- (a) $\{0, 2\}$
- (b) $\{0,1\}$
- (c) $\{0, 2, 4, 6, \dots\}$
- (d) $\{\ldots, -6, -4, -2, 0, 2\}$
- 13. Compute $\frac{81}{20} \div \frac{60}{36}$ and write your answer in lowest terms.
 - (a) 81/13
 - (b) 243/100
 - (c) 27/4
 - (d) 3/1600
- 14. (5 points) Use any multiplication algorithm to compute $423_{\rm five} \times 314_{\rm five}$.

15. (5 points) Test the number 749968830 for divisibility by 2, 3, 4, 5, 6, 8, 9, 10, and 20. Show work and/or explain your reasoning.

16. (5 points) The area of a rectangle is 24 square inches. Its length and width are natural numbers. Use this information to find the rectangle with the least possible perimeter.

Length, ℓ

17. (5 points)

(a) Find the fourth term of the geometric sequence whose first term is 3 and whose ratio is 5.

(b) A recursive sequence is defined as follows:

$$B_1 = -2$$
, $B_n = -3 \cdot B_{n-1} + 5$, for $n = 2, 3, 4, \dots$

Find the third term of the sequence.

(c) Find the next term: $2, 4, 9, 17, 28, 42, \ldots$

18. (5 points) Suppose A and B are subsets of U, and U has 36 elements. Use a two-set Venn diagram to help you determine n(B) if n(A) = 16, $n(A \cap B) = 9$, and $n(\overline{A \cup B}) = 8$.

19. (5 points) Use a model to illustrate and compute each product. (Model what is given, not a related problem.)

(a)
$$3 \times \frac{1}{2}$$

(b)
$$\frac{1}{2} \times \frac{3}{4}$$

(c)
$$-3 \times (-2)$$

20. (2 points) After looking at these examples:

$$5 \cdot 3 + 5 \cdot 5 = 40$$
, $5 \cdot 2 + 5 \cdot 4 = 30$, $5 \cdot 8 + 5 \cdot 10 = 90$,

Marcus conjectured that the sum of two multiples of 5 is a multiple of 10. Is he correct? If not, give a counterexample.

21. (5 points) Find the prime factorization of 4500. Then use your factorization to determine the number of positive integer divisors of 4500.

22. (5 points) Use a NONSTANDARD a	algorithm to compute each of the	e following.
------------------------------------	----------------------------------	--------------

(a)
$$5686 + 6679$$

(b)
$$345 - 269$$

(c)
$$6745 \div 5$$

23. (2 points) State a basic property of the Hindu-Arabic numeration system.

24. (1.5 points) In a sentence or two, describe how to find 9/8 on the number line.

25. (1.5 points) Write the expanded form of the number 54967.

26. (2 points) Use an integer subtraction model to illustrate and compute -2-(-5).