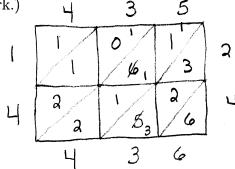
Math 200 - Test 3

November 17, 2010

Name	key	,
	J	Score

Show all work. Supply explanations where necessary.


- 1. (1 point) Choose the division model that best fits the following problem situation: Sabrina has 18 stickers for her sticker book. If she puts 3 stickers on each page, how many pages does she fill?
 - (a) set partition model
 - (b) repeated subtraction model
 - (c) missing factor model
 - (d) charged field model
- 2. (1 point) Which one of the following is a legitimate test for divisibility by 12?
 - (a) An integer is divisible by 12 if and only if it is divisible by both 2 and 6.
 - (b) An integer is divisible by 12 if and only if it is divisible by both 3 and 4.
 - (c) An integer is divisible by 12 if and only if the sum of its digits is divisible by 12.
 - (d) All of the above or none of the above
- 3. (3 points) Use any multiplication algorithm to compute $435_{\rm seven} \times 24_{\rm seven}$. (Use the back of the last page if you need more room to work.)
 - (a) 10440_{seven}
 - (b) 14 106 seven
 - (c) $14\,136_{\text{seven}}$
 - (d) 14436_{seven}
- 4. (1 point) Consider the following conjecture:

If
$$x \mid 3y$$
, then $x \mid y$.

Which one of the following is a counterexample?

- (a) $2 \mid (3 \cdot 6)$ and $2 \mid 6$.
- (b) $6 \mid (3 \cdot 2) \text{ and } 6 \nmid 2$
- (c) $5 \nmid (3 \cdot 7) \text{ and } 5 \mid 7$
- (d) The conjecture is true.
- 5. (1 point) Which one of these is an example of an integer x for which |x| = -x?
 - (a) -1.352
 - (b) 5

- (c) -117
- (d) None of the above

BASE 7

- 6. (2 points) Give a brief but thorough explanation for why $0 \div 0$ is not defined.
- According to missing FACTOR MODEL, 0 + 0 = K IF AND ONLY IF K IS THE UNIQUE NUMBER SUCH THAT K.O = O.

THIS IS TRUE FOR ANY NUMBER K. THERE IS NO UNIQUE SUCH NUMBER!

7. (4 points) Use a different model to illustrate each product.

(a)
$$-6 \times (-2)$$

CHARGES: START

WITH ZERO. TAKE OUT

6 groups OF 2 NEgs.

(b)
$$-4 \times 5$$

 $3 \times 5 = 15$ PATTERN:

2x5=10

1 x 5 = 5

0x5=0

REMOVE THESE.

By 1 > DECREASE

PRODUCT BY 5

$$-1 \times 5 = -5$$

 $-3 \times 5 = -10$
 $-3 \times 5 = -15$
 $-4 \times 5 = -20$

(c) Explain why the repeated addition model is not a good model for illustrating either one of the products above.

> ITS HARD TO IMAGINE WHAT IT MEANS TO REPEATEOLY ADD SOMETHING A NEGATIVE NUMBER

8. (4 points) Test the following number for divisibility by \mathcal{Z} , \mathcal{Z} , and \mathcal{Z} .

41064276641149669988940

4: YES, 4 140

5: YES, 5/0

10: YES, ENDS IN O

8: No, 8/940


sum of Digits 15 6.

3: Yes, 3/6


9: No. 916

6: YES, BECAUSE YES FOR 2 &3 12: YES, BECAUSE YES FOR 3 & 4

9. (1 point) Choose the division model that best fits the following problem situation: April has 35 pieces of Halloween candy to divide evenly among 7 children. How much candy does each child get?

- (a) charged field model
- (b) repeated subtraction model
- (c) missing factor model
- (d) set partition model

(a) a divided by b

- (b) a is a multiple of b
- (c) a is a divisor of b
- (d) There exists an integer k such that $a \div b = k$.

11. (1 point) Suppose n and m are integers. Which one of the following is equal to $-n \times (-m)$?

- (a) $n \times m$
- (b) $-(n \times m)$
- (c) $-n \times m$
- (d) $n \times (-m)$

12. (1 point) Compute -3 - (-3) - 3 + (-3) - 3 - (-3).

(a) 0

-3+3+(-3)+(-3)+(-3)+3

- (b) -9
- (c) -6
- (d) 3

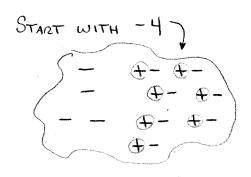
13. (1 point) Which one of the following is the additive inverse of the expression -5x+2-y?

- (a) 5x + 2 y
- (b) 5x 2 + y
- (c) 1
- (d) $\frac{1}{5x-2+y}$

14. (3 points) Trevor used the number line to model -4-7. Here is what he said:

"Start at zero facing right. Turn around, go four. Back-up seven. You end up at three. Therefore, -4 - 7 = 3."

(a) Is Trevor correct? If not, correct his application of the number line model.


Noway! -4-7=-11. START AT ZERO FACING RIGHT.

BACK UP 4. TURN AROUND. GO

FORWARD T.

(b) Use a different model to illustrate Trevor's problem.

THEN TAKE AWAY 7+'s (circleo).

LEAVES 11 -'s.

15. (3 points) Clearly state the rule for adding two integers with opposite signs. Give an example that illustrates your rule.

> SUBTRACT THEIR ABSOLUTE VALUES, LEAST FROM GREATEST. THEN GIVE THE RESULT THE SIGN OF THE ADDWO WITH THE GREATEST ABSOLUTE VALUE.

$$eg.$$
 $2+(-5)=-(5-2)=-3$

16. (2 points) Use short division to compute $-284135 \div (-5)$.

NEg + NEg = pos. So l'il compute 284135 + 5

FINAL RESULT WILL BE +.

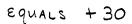
QUOTIENT 15

56,827,

17. (1 point) Suppose a and b are integers. Which one of the following is equal to -a-(-b)?

- (a) -a + b
- (b) a b
- (c) -a-b
- (d) a+b

18. (1 point) Which one of the following is a true statement?


- (a) 0 | 7
- **(**b**)** 9 | 12321
- (c) $24 \mid 6 = 4$
- (d) 18 divides 6

19. (1 point) What is the sign of $2 \times (-2) \times (-3) \div (-2) \times 5 \div (-1)$?

(a) positive

(b) negative $\epsilon_{\text{quals}} + 30$

- (b) negative

20. (1 point) Suppose $d \mid a$ and $d \mid b$. Which one of the following is NOT necessarily true?

- (a) $d \mid (2a 3b)$
- (b) $d \mid ab$
- (c) $a \mid ad \text{ if } a \neq 0$
- (d) a | d

21. (1 point) Suppose x is an integer. Which one of the following is equal to $-x \div (-2)$?

- (a) $-x \div 2$
- (b) $-(x \div 2)$
- (c) $x \div (-2)$

22. (1 point) The number 1 is also know as

- (a) the multiplicative identity.
- (b) the additive identity.
- (c) the additive inverse.
- (d) the multiplicative inverse.

23. (3 points) Explain why the algorithm illustrated below works. Then use it to compute 19×53 .

This is a partial products

Algorithm. Each term

IS A partial product. It

$$120 \leftarrow 6 \times 40$$
 $160 \leftarrow 6 \times 40$

IS THE SAME AS USING

FOIL ON (30+4)(40+6) OR

USING THE RECTANGLE:

$$\begin{array}{c|c}
\hline
 & 19 \\
 \times 53 \\
\hline
 & 37 \\
 & 30 \\
 & 450 \\
 & 450 \\
\hline
 & 1007
\end{array}$$

24. (2 points) Use the standard long division algorithm to compute $54192 \div 24$.

$$\begin{array}{r}
 2358 \\
 34)54192 \\
 -481 \\
 -481 \\
 \hline
 -139 \\
 -192 \\
 \hline
 -192 \\
 \hline
 -192
 \end{array}$$

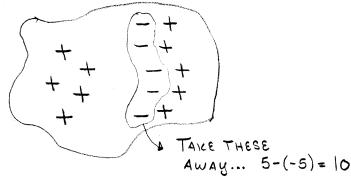
25. (2 points) Any number in which each digit except 0 appears exactly 3 times must be divisible by 3. Explain why this must be true and give an example of such a number.

Such A NUMBER 18 765567222756.

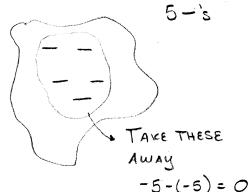
A NUMBER IS DIVISIBLE BY 3 IF AND ONLY IF THE SUM OF ITS

DIGITS IS DIVISIBLE BY 3. IF EACH DIFFERENT DIGIT OCCURS

3 TIMES, THEN THE TOTAL SUM OF DIGITS WILL BE 3 TIMES

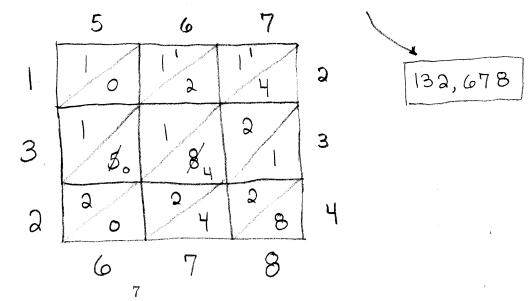

THE SUM OF DISTINCT DIGITS, AND THEREFORE IT WILL BE A MULTIPLE OF 3.

IN MY EXAMPLE...


7+6+5+6+7+2+2+2+7+5+6 = 7+7+7+6+6+6+5+5+5+2+2+2

= 3(7+6+5+2) = MULTOF 3.

27. (3 points) It is common for students to make mistakes when computing differences such as 5 - (-5) and -5 - (-5). Use the charged-field model to compute each difference. Be sure to label which is which.



-5-(-5) START WITH 5-'s. TAKE AWAY

28. (2 points) Use a nonstandard multiplication algorithm to compute 567×234 .

LATTICE ...

29. (2 pts ex cred) See problem #8 on page 172. Use the Russian peasant algorithm to compute 85×93 .

85 x 93 ...

HALVES 85	Doubles 93
42	/86 × 2
a (37 a
10	744
5	(1488)
a	× 2 2976
	x 2 (5952)
	1 31