Math 200-01

Final Exam Information

The 1st final exam is Wednesday, December 1, during class. The 2nd final exam is Wednesday, December 15, 10am–11:50am, in Room 2625. Special office hours during finals week:

- Monday, December 13: 2:00pm 5:00pm
- Tuesday, December 14: 12:00pm 2:00pm
- Wednesday, December 15: 12:00pm 1:00pm

Skills Checklist

- 1. Be prepared to state Polya's four steps.
- 2. Be prepared to explain a number of different strategies for applying any given one of Polya's four steps.
- 3. Be prepared to give several examples of problems (especially elem school problems) and describe how Polya's steps are involved in the solution processes.
- 4. Be prepared to explain how a specific step (of Polya's four) can be applied to a given problem.
- 5. Be able to explain how and why a specific strategy is related to one of Polya's steps.
- 6. Be prepared to use Polya's steps to solve a problem.
- 7. Be prepared to continue patterns and explain your reasoning.
- 8. Explain the difference between inductive and deductive reasoning. Use both kinds of reasoning in problem solving.
- 9. Find counterexamples to disprove conjectures.
- 10. Find the nth term of an arithmetic sequence. Find any specific term of an arithmetic sequence and the sum of any number of terms.
- 11. Find terms of a recursively-defined sequence.
- 12. Find the *n*th term of a geometric sequence.
- 13. Determine whether a sequence has a constant first, second, or third difference. Find several terms of the sequence to continue the pattern.
- 14. Determine whether a set is well defined.
- 15. Determine whether a given object is an element of a certain set.
- 16. Write sets in roster (listing) notation or in set-builder notation.
- 17. Demonstrate the proper use of the symbols of set theory.

- 18. Determine whether sets are equal. Determine whether sets are in a one-to-one correspondence.
- 19. Determine subsets of a given set. Determine whether one set is a subset of another.
- 20. Determine the cardinality of a set.
- 21. Find the complement of a set.
- 22. Find examples of sets that satisfy certain conditions.
- 23. Use Venn diagrams to illustrate subsets, complements, and their relationships.
- 24. Find unions and intersection of groups of sets.
- 25. Determine relative complements (differences of sets).
- 26. Use Venn diagrams to prove set identities.
- 27. Shade the region of a Venn diagram corresponding to a given combination of sets.
- 28. Use set notation to name the shaded region of a Venn diagram.
- 29. Solve application problems using two- or three-set Venn diagrams.
- 30. Find the Cartesian product of two sets.
- 31. Give real-world applications of set unions, intersections, differences, and products.
- 32. State and explain the two basic properties of the Hindu-Arabic numeration system.
- 33. Write a number in expanded form.
- 34. Represent a number in any base using base blocks.
- 35. Convert a number from another base to base ten.
- 36. Convert a base-ten number to another base.
- 37. Write the counting numbers in any base.
- 38. Know several models for each of the whole number operations: addition, subtraction, multiplication, and division.
- 39. Know and use the correct order of operations.
- 40. In addition to the standard algorithms, you should know how to use several nonstandard algorithms to add, subtract, multiply, or divide whole numbers.
- 41. Be able to carry out addition and multiplication in bases other than 10 and illustrate your procedure with base blocks.
- 42. Know several estimation and mental arithmetic schemes.
- 43. Know and use the commutative, associative, and distributive properties.

- 44. Know several models for integer addition, subtraction, multiplication, and division.
- 45. Be able to rewrite subtraction and division problems in terms of addition and multiplication.
- 46. Explain why division by zero is not defined.
- 47. State the rules for adding, subtracting, multiplying, or dividing signed numbers. Give examples to illustrate the rules.
- 48. Know the definition of "divides" and be able to use theorems 5–12 and 5–13.
- 49. Know and apply the divisibility tests for 2, 3, 4, 5, 6, 8, 9, and 10.
- 50. Find prime factorizations.
- 51. Determine whether a number is prime or composite.
- 52. Use the Sieve of Eratosthenes to determine all primes less than or equal to n.
- 53. Use the prime factorization to determine the number of positive divisors on an integer.
- 54. Compute LCMs and GCDs. Know and use the formula $LCM(a, b) \cdot GCD(a, b) = ab$.

In addition to everything listed above, the second final exam will also cover the following skills.

- 1. Perform operations on rational numbers (including improper fractions and mixed numbers).
- 2. Use figures to describe fractions and the operations of addition, subtraction, multiplication, and division.
- 3. Estimate the values of fractions and judge the reasonableness of your estimate.
- 4. Write fractions as terminating or repeating decimals.
- 5. Know the difference between the following sets of numbers: natural numbers, whole numbers, integers, rational numbers, and irrational numbers.