Math 173 - Quiz 3 February 9, 2017

Name key Score

Show all work to receive full credit. Supply explanations when necessary.

1. (3.5 points) Find the area of the triangle with vertices P(1,2,3), Q(2,5,-4), and R(-1,-3,4).

$$\vec{PQ} = \hat{i} + 3\hat{j} - 7\hat{k}$$

$$\vec{PR} = -3\hat{i} - 5\hat{j} + \hat{k}$$

$$= \frac{1}{3} \sqrt{(3a)^{3} + (13)^{3} + 1^{3}}$$

$$\vec{PQ} \times \vec{PR} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 3 & -7 \\ -2 & -5 & 1 \end{vmatrix} = \hat{i} (-3a) - \hat{j} (-13) + \hat{k} (1)$$

$$\approx 17.2772$$

2. (1 point) Find an equation for the plane passing through the origin and parallel to the plane containing the triangle above.

$$\vec{\eta} = -38\hat{c} + 13\hat{j} + \hat{k}$$

POINT (0,0,0)

-33x + 13y + Z = 0

3. (2 points) Find a set of parametric equations for the line passing through (8, -4, 2) and parallel to the line with symmetric equations

$$\frac{x+3}{5} = \frac{y-2}{-3} = z+1.$$

$$7 = 5(-3) + k$$

$$P_{01N} + (8,-4,2)$$

$$X = 8+5+, \quad y = -4-3+, \quad z = 2+1$$

4. (3.5 points) Find a set of parametric equations for the line of intersection of the following planes

lowing planes
$$\hat{\Pi}_{1} = \partial \hat{i} + \hat{j} - \hat{k}$$

$$\hat{\Pi}_{2} = 3\hat{i} + \partial \hat{j} + \hat{k}$$

$$\hat{\Pi}_{3} = 3\hat{i} + \partial \hat{j} + \hat{k}$$

$$\hat{\Pi}_{4} = \hat{\Pi}_{4} + \hat{\Pi}_{5} + \hat{\Pi}_{$$

 $= 3\hat{i} - 5\hat{j} + \hat{k}$

$$x = 3t$$
, $y = 4-5t$, $z = t$