

Math 173 - Quiz 1

January 19, 2012

Name key

Score _____

Show all work to receive full credit. Supply explanations when necessary.

1. (2 points) Find a vector perpendicular to the vector whose initial point is $(1, -4)$ and whose terminal point is $(-3, -6)$.

Q

$$\overrightarrow{PQ} = (-3-1)\hat{i} + (-6-(-4))\hat{j} = -4\hat{i} - 2\hat{j}$$

$$\uparrow \text{Slope is } \frac{-2}{-4} = \frac{1}{2}$$

\perp slope is -2 , Perp vector is $\hat{i} - 2\hat{j}$

2. (2 points) Let $\vec{u} = 3\hat{i} - 2\hat{j}$. Find the component form of the vector of magnitude 7 that has the same direction as \vec{u} .

$$|\vec{u}| = \sqrt{(3)^2 + (-2)^2} = \sqrt{9+4} = \sqrt{13}$$

$$\frac{7}{\sqrt{13}} (3\hat{i} - 2\hat{j}) = \boxed{\frac{1}{\sqrt{13}} (21\hat{i} - 14\hat{j})}$$

3. (3 points) The vector \vec{u} has initial point $(-9, 2)$ and terminal point $(5, 1)$. The vector \vec{v} has magnitude 4 and makes a 30° angle with the positive x -axis. Find the component form of $\vec{u} + \vec{v}$.

$$\vec{u} = (5+9)\hat{i} + (1-2)\hat{j} = 14\hat{i} - \hat{j}$$

$$\vec{v} = 4 \cos 30^\circ \hat{i} + 4 \sin 30^\circ \hat{j} = 2\sqrt{3}\hat{i} + 2\hat{j}$$

$$\boxed{\vec{u} + \vec{v} = (14 + 2\sqrt{3})\hat{i} + \hat{j}}$$

4. (3 points) Let $\vec{w} = 3\hat{i} - 5\hat{j} + 2\hat{k}$. Find a vector of magnitude 3 whose direction is opposite that of \vec{w} .

$$|\vec{w}| = \sqrt{(3)^2 + (-5)^2 + (2)^2} = \sqrt{9+25+4} = \sqrt{38}$$

$$-\frac{3}{\sqrt{38}} \vec{w} = \boxed{-\frac{1}{\sqrt{38}} (-9\hat{i} + 15\hat{j} - 6\hat{k})}$$