

Math 172 - Quiz 5

September 27, 2017

Name key

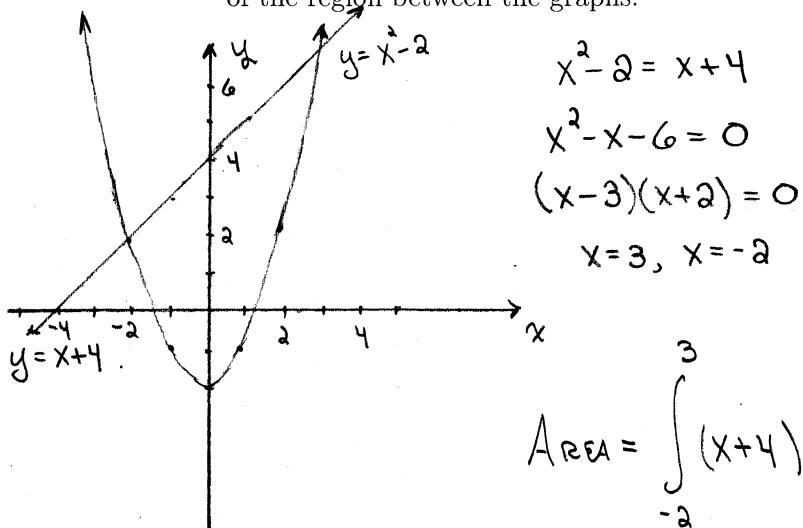
Score _____

Show all work to receive full credit. Supply explanations when necessary.

1. (2 points) Use the definitions of the hyperbolic functions (in terms of exponentials) to prove that

$$\cosh^2 x = \left(\frac{e^x + e^{-x}}{2} \right)^2 = \frac{e^{2x} + 2 + e^{-2x}}{4}$$

$$\frac{1 + \cosh 2x}{2} = \frac{1 + \frac{e^{2x} + e^{-2x}}{2}}{2} = \frac{2 + e^{2x} + e^{-2x}}{4}$$


} SAME.

2. (2 points) Evaluate the integral by converting to exponentials: $\int \sinh 2x \, dx$

$$\int \sinh 2x \, dx = \int \frac{e^{2x} - e^{-2x}}{2} \, dx = \frac{\frac{1}{2}e^{2x} + \frac{1}{2}e^{-2x}}{2} + C$$

$$= \frac{1}{2} \cosh 2x + C$$

3. (6 points) Carefully sketch the graphs of $y = x^2 - 2$ and $y = x + 4$. Then find the area of the region between the graphs.

$$\begin{aligned}
 \text{AREA} &= \int_{-2}^3 (x+4) - (x^2 - 2) \, dx = \int_{-2}^3 (6 + x - x^2) \, dx \\
 &= \left. 6x + \frac{1}{2}x^2 - \frac{1}{3}x^3 \right|_{-2}^3 = \left(18 + \frac{9}{2} - 9 \right) - \left(-12 + 2 + \frac{8}{3} \right) \\
 &= \boxed{\frac{125}{6}} = 20.8\bar{3}
 \end{aligned}$$