Math	171	-	\mathbf{Test}	2

October 21, 2010

Name	
	Score

Show all work to receive full credit. Supply explanations where necessary.

1. (6 points) If $g(x) = 7x^3(x - 4x^2)$, find the value of g''(2).

2. (8 points) Let $f(x) = (\sin x)^4$. Find f'(x). Then find an equation of the line tangent to the graph of f at the point where $x = \pi/4$.

- 3. (12 points) An object is launched from a tall building so that its height in feet after t seconds (measured from the ground) is given by $s(t) = -16t^2 + 64t + 512$.
 - (a) What is the velocity of the object after 7 seconds?

(b) What is the maximum height of the object?

(c) When does the object hit the ground?

4. (8 points) Assume that y is implicitly defined as a function of x by the following equation:

$$xy = 2x - y^3.$$

Find
$$\frac{dy}{dx}$$
 at $(1,1)$.

5. (5 points) Suppose that the infected region of an injury is circular, and its radius is growing at a rate of $1.3\,\mathrm{mm/hr}$. Find the rate of change of area of the infected region when the radius is $3\,\mathrm{mm}$.

6. (8 points) Find the absolute maximum and minimum values of $g(x) = x^3 - 3x^2 + 1$ on the interval [-1/2, 4].

7. (15 points) Differentiate. Do not simplify.

(a)
$$\frac{d}{dw} \frac{\sqrt{w}}{w^2 + 3w + 1}$$

(b)
$$\frac{d}{dt} (t^7 - 7t) \tan t$$

(c)
$$\frac{d}{dx}\cos(x^3+x)$$

8. (6 points) Find all critical numbers of the function $f(x) = 5x^{2/3} + x^{5/3}$.

9. (3 points) If
$$f'(5) = 7$$
, $f(5) = 0$, $g(1) = 5$, and $g'(1) = 3$, determine $\frac{d}{dx}f(g(x))$ when $x = 1$.

10. (15 points) Consider	the function	f(x) =	$x^4 + 4x^3 -$	$36x^{2}$.
-------	-----------	------------	--------------	--------	----------------	-------------

(a) Determine f'(x).

(b) Find all x-values for which f' is zero or not defined.

(c) Determine open intervals on which f is increasing/decreasing.

(d) Identify all relative extreme values of f.

(e) Evaluate f'' at one of the critical numbers of f. How does the sign of f'' at that point support your conclusion in part (d)?

11.	(6 1	points)	What	do	the	signs	of	f''	sav	about	the	graph	of	f?

- 12. (5 points) Suppose the function f satisfies the following conditions:
 - $\bullet \ f$ is continuous on [0,5] and differentiable on (0,5)
 - f'(x) < 2 for all x in [0, 5]
 - f(0) = 0

Use the Mean Value Theorem to show that f(5) < 10.

13. (3 points) What is an inflection point?