Math 171-01

Final Exam Information

The 1st final exam is Thursday, December 2, during class. The 2nd final exam is Wednesday, December 15, 1pm-2:50pm, in Room 2625. Special office hours during finals week:

- Monday, December 13: 2:00pm 5:00pm
- Tuesday, December 14: 12:00pm 2:00pm
- Wednesday, December 15: 12:00pm 1:00pm

Skills Checklist

- 1. Find the equation of a line (especially a tangent line).
- 2. Compute limits by substitution. For example, $\lim_{x\to 3}(x^2-5x+1)$.
- 3. Know what to do with limits of the form $\frac{0}{0}$. For example, $\lim_{x\to 1}\frac{x^2-1}{x-1}$
- 4. Know how to use $\lim_{x\to 0} \frac{\sin x}{x} = 1$. For example, $\lim_{x\to 0} \frac{\sin 5x}{\sin 3x}$
- 5. Use the Sandwich Theorem to find limits.
- 6. Find out if an infinite limit is $+\infty$ or $-\infty$.
- 7. Test for continuity (especially in piecewise defined functions).
- 8. Compute a derivative from the definition. $f'(x) = \lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$
- 9. Apply standard differentiation rules, including the chain rule for compositions of functions.
- 10. Know how to derive the differentiation formulas for the trig functions.
- 11. Solve problems involving position, velocity, and acceleration. Know the difference between average velocity and instantaneous velocity.
- 12. Compute derivatives of implicitly defined functions.
- 13. Set up and work out a straight forward related rate problem.
- 14. Find the absolute extrema of continuous functions on closed and bounded intervals.
- 15. Be able to state and explain Rolle's Theorem and the Mean Value Theorem.
- 16. Apply the first derivative test to determine intervals on which a function is increasing/decreasing.
- 17. Apply the second derivative test to determine intervals on which a function's graph is concave up/down.
- 18. Find all asymptotes (vertical, horizontal, oblique) of the graph of a function.

- 19. Set up and work out a straight forward optimization problem.
- 20. Compute differentials. dy = f'(x)dx
- 21. Use Newton's Method $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$ to approximate solutions of f(x) = 0.
- 22. Apply standard antidifferentiation rules to evaluate indefinite integrals. Do not forget to include +C with your antiderivatives.
- 23. Understand the relationship between $\int_a^b f(x)dx$ and the area of the region under the graph of f.
- 24. Use Riemann sums to approximate definite integrals. For example, compute the Riemann sum using right endpoints for the function $f(x) = x^3$ on the interval [0,1] when four subintervals are used.
- 25. Compute the average value of a function. Avg Value = $\frac{1}{b-a} \int_a^b f(x) dx$
- 26. Know the basic properties of definite integrals.
- 27. Use the Fundamental Theorem of Calculus to compute $\int_a^b f(x)dx$.
- 28. Use substitution to evaluate definite and indefinite integrals.
- 29. Find the area between two curves.
- 30. Approximate definite integrals using the Trapezoidal rule: $T = \frac{h}{2}(f(x_0) + 2f(x_1) + \cdots + 2f(x_{n-1}) + f(x_n))$.

In addition to everything listed above, the second final exam will also cover the following skills.

- 1. Approximate definite integrals using Simpson's rule: $S = \frac{h}{3}(f(x_0) + 4f(x_1) + 2f(x_2) + \cdots + 2f(x_{n_2}) + 4f(x_{n-1}) + f(x_n)).$
- 2. Use the disk/washer method to find the volume of a solid of revolution.
- 3. Use the Fundamental Theorem of Calculus to compute $\frac{d}{dx} \int_a^{g(x)} f(t) dt = f(g(x)) \cdot g'(x)$.