Math 157 - Quiz 2

Name Key Score

August 31, 2016

Show all work to receive full credit. Supply explanations when necessary. You must work individually.

1. (2 points) Consider the graph of the function $f(x) = \frac{2^x + 6}{2}$. Find the slope of the secant line that passes through the points where x = 2 and x = 3.

$$f(a) = \frac{a^3 + 6}{a} = 5$$

$$f(3) = \frac{a^3 + 6}{a} = 7$$

 $M = \frac{f(3) - f(3)}{3 - 2} = \frac{7 - 5}{1} = 2$

2. (3 points) The following functions describe the populations (in thousands of people) of three different towns at time t (in years).

$$(A) - - - P(t) = 17(1.5^t) \qquad (B) - - - P(t) = 120(1.01^t) \qquad (C) - - - P(t) = 42(0.97^t)$$

Answer each question and explain how you know.

(a) Which town is growing the fastest?

(b) Which town is initially the largest?

(c) Which town has a population that is decreasing?

$$(C) - \alpha = 0.97 < 1$$

Since BASE IS LESS THAN 1,
P(+) IS DECREASING

3. (3 points) P=140 when t=3 and P=100 when t=1. Find the values of the parameters k and P_0 so that $P(t)=P_0e^{kt}$.

$$\frac{\ln 1.4}{2} = k \approx 0.168$$

$$100 = P_0 e^{\frac{M_1.4}{2}}$$
 $\Rightarrow P_0 = \frac{100}{e^{\frac{M_1.4}{2}}} \approx 84.515$

4. (2 points) A quantity is growing according to the formula $P(t) = 54e^{0.2t}$. Rewrite this as an equivalent function in the form $P(t) = P_0 a^t$ and determine the growth rate per unit time.

$$P(t) = 54 (1.9914)^t$$

 \bigvee

RATE OF GROWTH 18 22270

PER UNIT TIME.