MTH 132-950 Final Exam Information

The 100-point final exam will consist of two portions: a 40-point take-home portion and a 60-point in-class portion. The take-home portion will be posted Friday, May 7, and it will be due Wednesday, May 12, by 11:30 am. The in-class portion of the final will occur during class on Wednesday, May 12.

Your final exam will consist of twenty 5-point problems---one problem from each of the section objectives listed below. Each answer will have the form of a single number, a single mathematical expression, or a short phrase. The answer itself will be worth **up to** 2 points. The supporting work or explanation will be worth **up to** 3 points. The supporting work will be scored as follows:

- 0 points No work or no correct work/explanation
- 1 point Some correct ideas and work/explanation
- 2 points The ideas and work/explanation are mostly correct
- 3 points The ideas, notation, and work/explanation are correct

Final exam section objectives

- 1. Find the area of a bounded region between the graphs of two functions. (Section 2.1)
- 2. Use disks or washers to find the volume of a solid of revolution. (Section 2.2)
- 3. Use cylindrical shells to find the volume of a solid of revolution. (Section 2.3)
- 4. Derive and apply the formulas for derivatives and integrals of the hyperbolic functions. (Section 2.9)
- 5. Use integration by parts to evaluate indefinite and definite integrals. (Section 3.1)
- 6. Evaluate integrals involving powers of sines and cosines. (Section 3.2)
- 7. Use trigonometric substitutions to evaluate indefinite and definite integrals. (Section 3.3)
- 8. Integrate rational functions by using partial fractions. (Section 3.4)
- 9. Use the trapezoid rule to approximate definite integrals. (Section 3.6)
- 10. Explain the meaning of an infinite series, its partial sums, and its convergence or divergence. (Section 5.2)
- 11. Determine whether a geometric series converges or diverges. If possible, find its sum. (Section 5.2)
- 12. Recognize telescoping series, and determine convergence or divergence. (Section 5.2)
- 13. Use limit comparison to determine whether a series converges or diverges. (Section 5.4)
- 14. Determine when a series is absolutely or conditionally convergent. (Section 5.5)
- 15. Estimate the sum of an alternating series. (Section 5.5)
- 16. Determine the radius and interval of convergence of a power series. (Section 6.1)
- 17. Find the Taylor series for a function. (Section 6.3)
- 18. Eliminate the parameter from a set of parametric equations. (Section 7.1)
- 19. Find the area between a parametric curve and the horizontal axis. (Section 7.2)
- 20. Convert points and equations between rectangular and polar coordinates. (Section 7.3)