

Math 131 - Quiz 3

February 4, 2026

Name _____

Score _____

Show all work to receive full credit. Supply explanations when necessary.

1. (5 points) Determine each limit analytically.

(a) $\lim_{x \rightarrow 4} \frac{x(4-x)}{2 - \sqrt{x}}$

(b) $\lim_{x \rightarrow 0} \frac{\sin 5x}{x}$

2. (4 points) Determine each limit below analytically or explain why it does not exist.

$$f(x) = \begin{cases} x^2 - 5x + 6, & x < 2 \\ x^3 - 1, & x > 2 \end{cases}$$

(a) $\lim_{x \rightarrow 2^+} f(x)$

(b) $\lim_{x \rightarrow 2^-} f(x)$

(c) $\lim_{x \rightarrow 2} f(x)$

(d) $\lim_{x \rightarrow 1} f(x)$

3. (1 point) Suppose that $\frac{1}{2} - \frac{x^2}{24} < \frac{1 - \cos x}{x^2} < \frac{1}{2}$ for values of x close to $x = 0$.

What can you say about the limit below? What is the name of the theorem you used?

$$\lim_{x \rightarrow 0} \frac{1 - \cos x}{x^2}$$