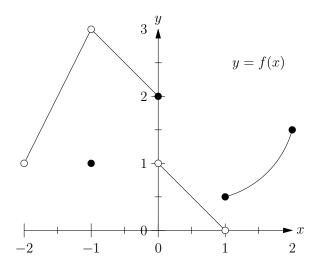
Show all work to receive full credit. Supply explanations where necessary. When evaluating limits, you may need to use $+\infty$, $-\infty$, or DNE (does not exist).

Name _____

1. (10 points) Referring to the graph shown below, determine each of the following or explain why it does not exist.



- (a) $\lim_{x \to -1} f(x)$
- (b) $\lim_{x \to 0^-} f(x)$
- (c) f(1)
- (d) $\lim_{x \to 0^+} f(x)$
- (e) $\lim_{x \to -2} f(x)$

2. (9 points) Suppose that $\lim_{x\to 2} f(x) = 3$ and $\lim_{x\to 2} g(x)$ exists. Determine each limit.

(a)
$$\lim_{x \to 2} (x^2 f(x) + g(x) \sin \pi x)$$

(b)
$$\lim_{x\to 2} g(x)$$
 if $\lim_{x\to 2} \frac{1}{(g(x))^2} = 5$

(c)
$$\lim_{x\to 2} g(x)$$
 if $\lim_{x\to 2} \frac{f(x)}{g(x)}$ does not exist

3. (6 points) Use a table of numerical values to approximate the following limit. Your table must show function values at four or more points.

$$\lim_{x \to 0^+} \frac{5^x - 1}{3x}$$

4. (6 points) Determine all points at which g is discontinuous. Carefully explain your reasoning.

$$g(x) = \begin{cases} x^2 + 2, & x \le 0\\ 1 + \cos x, & 0 < x < \pi\\ 1 + x \sin x, & x \ge \pi \end{cases}$$

5. (24 points) Determine each limit analytically, or explain why the limit does not exist. You may need to use $+\infty$, $-\infty$, or DNE.

(a)
$$\lim_{x \to 0} \frac{(x-2)^2 - 4}{x}$$

(b)
$$\lim_{k \to 4} \frac{\sqrt{k} - 2}{k - 4}$$

(c)
$$\lim_{x \to 4^{-}} \left(\frac{x-4}{x^2 - 8x + 16} \right)$$

(d)
$$\lim_{z \to 6} \frac{(z-4)^2 + 2(z+1)}{z+3}$$

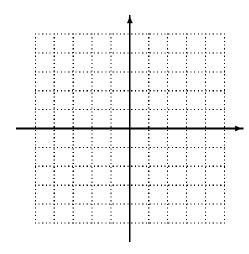
6. (4 points) Given that $-x^2 \le x^2 \cos \frac{1}{x} \le x^2$ when $x \ne 0$, compute $\lim_{x \to 0} x^2 \cos \frac{1}{x}$. Explain. (Can you state the name of the theorem you used?)

7. (5 points) Use the fact that
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
 to compute $\lim_{x\to 0} \left(\frac{3\tan 2x}{x}\right)$.

8. (5 points) Each row of the table below gives some information about a function f. Fill in each blank entry with an appropriate word or number. In some cases there may be more than one correct answer.

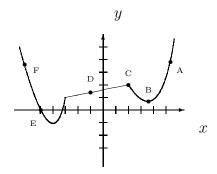
Continuous at $x = 2$	f(2)	$\lim_{x \to 2^{-}} f(x)$	$\lim_{x \to 2^+} f(x)$
Yes	5	5	
No	7		7
No		-1	-1
	2	2	2
Yes		1	

- 9. (6 points) Sketch the graph of a function f such that
 - f is defined for all real numbers between -5 and 5,
 - f(-2) = 3,
 - f has a removable discontinuity at x = -2,
 - $\lim_{x \to 3^-} f(x) = \infty$, and
 - $\bullet \lim_{x \to 3^+} f(x) = -1.$



10. (6 points) Consider the rational function $R(x) = \frac{2x+4}{x^2+3x+2}$. Find all points at which R is discontinuous, and state whether each discontinuity is removable or non-removable.

11. (6 points) Consider the function f whose graph is shown below.



Referring to the labeled points, find a point at which

(a)
$$f'(x) = 0$$

(b)
$$0 < f'(x) < 1$$

(c)
$$f'(x) > 1$$

$$(d) f(x) = 0$$

(e)
$$f'(x) < 0$$

(f)
$$f'(x)$$
 is not defined

Formal Definition of Limit: The statement $\lim_{x\to c} f(x) = L$ means that for each $\epsilon > 0$, there exists a $\delta > 0$ such that $0 < |x-c| < \delta$ implies that $|f(x) - L| < \epsilon$.

12. (5 points) Compute $\lim_{x\to -2} (2x-5)$ and then, referring to the formal definition of limit, find a δ that corresponds to an arbitrary positive ϵ .

13. (8 points) Let $f(x) = x^2 - 2x$. Use the limit definition of derivative to determine f'(x).