Math	131	_	Quiz	7
IVICUII	TOT		& all	•

Show all work to receive full credit. Supply explanations when necessary. You must work individually on this quiz. This quiz is due no later than May 5.

1. (2 points) Let $f(x) = 6x^2 - \sec x \tan x$. Determine the antiderivative of f whose graph passes through the point (0,5).

2. (2 points) Suppose f and g are functions that satisfy $\frac{d}{dx}g(x) = -2f(x)$. Evaluate $\int 5f(x) dx$. (Your answer should be written in terms of the function g.)

3. (2 points) Use differentiation to check whether the following statement is true or false. Show your work.

$$\int \ln x \, dx = x \ln x + x + C$$

4. (2 points) Let $f(x) = -x^2 + 3x - 2$. Use 4 rectangles (of equal base length) to estimate the area of the region between the graph of y = f(x) and y = 0. For the heights of your rectangles, use function values at the left endpoints of the subintervals. (Using the notation of our textbook, you are computing L_4 .) Draw the corresponding picture.

5. (2 points) Sketch the graph of y = x + 1 over the interval [0,2]. Then use the area concept to compute $\int_0^2 (x+1) dx$. (Your work must show how you used area to get your answer.)