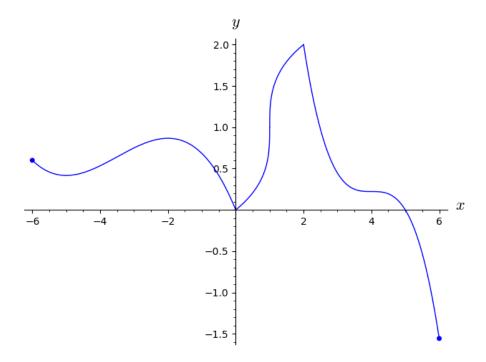
Math	13	31	_	Test	2
October	9,	20	$\overline{24}$		

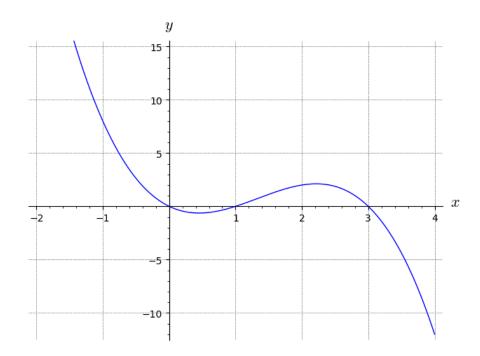
 $Name _$


Score _____

Show all work to receive full credit. Supply explanations where necessary. Unless otherwise indicated, use differentiation rules for all derivatives and do not simplify.

1. (9 points) Let $f(x) = 3x^2 - x$. Use the limit definition of the derivative to compute f'(x). Show all work.

2. (3 points) Using your result from above, find the instantaneous rate of change of f at the point where x=2.


3. (12 points) Use the graph of y = f(x) is shown below. Use the graph to solve each part of this problem.

- (a) Find three x-values in the interval (-6,6) at which f'(x) does not exist. Explain why f'(x) DNE at each of your points.
- (b) Determine an x-value at which f'(x) = 0. Explain how you know.
- (c) Sketch the tangent line at the point where x = -4. Then use your tangent line to estimate f'(-4). Show work or explain your reasoning.
- (d) Determine an x-value at which f'(x) < 0. Explain how you know.

4. (6 points) The graph of the function y = f(x) is shown below. By using the graph to estimate them, place the following values in order from least to greatest. Explain or show work.

$$f'(1), \qquad f'(-1), \qquad f(1), \qquad f'(2)$$

5. (6 points) Find an equation of the tangent line to the graph of $y = x^3 + \sqrt[3]{x} + \frac{1}{x^3}$ at the point where x = -1. Write you final answer in slope-intercept form.

6. (12 points) The following table gives information about the functions f and g and their derivatives at selected points.

\boldsymbol{x}	f(x)	f'(x)	g(x)	g'(x)
0	6	0	-6	-3
1	7	2	-3	-1
2	-7	4	0	1
3	-4	8	1	5

- (a) Find h'(1) if $h(x) = 2x^2 f(x)$.
- (b) Find h'(3) if h(x) = f(x)/g(x).
- (c) Find h'(0) if $h(x) = [g(x)]^4$.
- (d) Find h'(2) if h(x) = f(g(x)).

7. (4 points) Use trig identities and the quotient rule to derive our formula for the derivative of $y = \tan x$ from the basic rules for the sine and cosine.

- 8. (12 points) A potato is launched vertically upward with an initial velocity of $48 \, \text{ft/s}$ from a potato gun at the top of an 160-foot-tall building. After t seconds, the potato's height (in feet) measured from the ground is given by $s(t) = -16t^2 + 48t + 160$.
 - (a) Determine the maximum height of the potato.
 - (b) Determine when the potato hits the ground.
 - (c) Determine the speed of the potato when it hits the ground.

9. (5 points) Let $w(x) = x^5 + x^2 - 7\sin x$. Find w'''(x).

10. (7 points) Let $F(x) = \tan^3(x^2 + x + 1)$. Compute F'(x). (You'll need to use the chain rule twice.)

11. (15 points) Differentiate. Do not simplify.

(a)
$$\frac{d}{dx}[x^4(x^2+2x+4)]$$

(b)
$$\frac{d}{dx} \left(\frac{x \cos x}{2x + 5} \right)$$

(c)
$$\frac{d}{dt}\sqrt{t^3 + 2t + 1}$$

12. (9 points) Assume that y is implicitly defined as a function of x by the equation $x^4y + y^3 = -2x$. Use implicit differentiation to find dy/dx at (-1,1). Then find an equation for the normal line at (-1,1).