## Math 131 - Assignment 4

September 19, 2024

Name \_\_\_\_\_\_ Score \_\_\_\_\_

Show all work to receive full credit. Supply explanations when necessary. This assignment is due September 26.

1. Use the limit definition of the derivative to determine f'(x) when  $f(x) = x^2 + x - 3$ .

2. Use the limit definition of the derivative to determine f'(x) when  $f(x) = x^3$ .

3. Use the limit definition of the derivative to determine f'(x) when  $f(x) = \frac{1}{x^2}$ .

- 4. Think about the graph of  $y = \sqrt[3]{x}$ . For which of our three reasons does dy/dx fail to exist at x = 0?
- 5. Think about the graph of  $y = |\sin x|$ . For which of our three reasons does dy/dx fail to exist at x = 0?
- 6. Use differentiation rules (not the limit definition) to determine each derivative.

(a) 
$$\frac{d}{dx} \left( 5x^2 + 2x - \sqrt{x} + \frac{1}{x^3} \right)$$

(b) 
$$\frac{d}{dx}[x^2(2x^2-3x)]$$

(c) 
$$\frac{d}{d\theta}(2\cos\theta + 7\sin\theta)$$

- 7. Look back at problem 6a. Use the derivative you found there to find the slope of the line tangent to the graph of the function at the point where x = 1. Then find an equation for the tangent line itself.
- 8. Find each point on the graph of  $y = x^4 2x^2 + 3$  at which the tangent line is horizontal.