Quiz 8

① This is a preview of the published version of the quiz

Started: Nov 10 at 9:25am

Quiz Instructions

Choose the best solution choice for each multiple-choice problem. Each problem is worth two (2) points.

Question 1	,	pts
A particle is moving along the grap $oldsymbol{x}=oldsymbol{2}.$	on of $y=4-x^2$ in such a way that $\frac{dx}{dt}=3$. Find $\frac{dy}{dt}$ when $\frac{dy}{dt}=0$ and $\frac{dx}{dt}=3$.	•
○ 3	dt ^dt	normational statement descri
○ -4		
O 0	$\frac{dy}{dt} = -\partial x \frac{dx}{dt}$	unum reservate en
* -12	$\frac{dy}{dt}\Big _{x=a} = -\partial(a)(3) = (-16)$	

Question 2	2 pts

Given the following information, find and use the linearization (a.k.a, the tangent line approximation) of f at x=2 to approximate f(1.9).

$$f(1) = 7.8, \quad f'(1) = -1.4, \quad f(2) = 6.5, \quad f'(2) = -0.9$$

$$f(1.9) \approx 6.59$$

$$f(1.9) \approx 7.05$$

$$f(1.9) \approx L(1.9) = 6.5 - 0.9(-0.1)$$

Let $y=\sin x$. Use differentials to approximate Δy when x=0 and $\Delta x=0.12$.

$\Delta y pprox 0.12$	$dy = \cos x dx$	
\bigcirc $\Delta y \approx 0.00209$	Ay ≈ Cos x Ax	
$\bigcirc~\Delta y pprox 0.09$. > / >
\bigcirc $\Delta y pprox 0.1197$	$X=0$, $\Delta X=0.12$	Δy ≈ cos(o) (0.1a)
	•	= 0.12

Question 4

2 pts

Suppose you were to use calculus techniques (i.e., those from the lecture 22 notes \Rightarrow (http://stevekifowit.com/archives/M131/lect22.pdf) to find the absolute extreme values of $f(x) = 3x^4 - 4x^3$ on the interval [-1,2]. Which of these function values would be required in order for you to draw your conclusions? $+ (\chi) = - \chi \chi + \chi \chi$

$$f(-1),\ f(0),\ f(1),\ f(2),$$
 and no other values

$$= 13x^{2}(X-1) = 0$$

$$\bigcirc \ f(-1), \ f(0), \ f(2),$$
 and no other values

$$\bigcirc \ f(-1), \ f(-0.5), \ f(0), \ f(0.5), \ f(1), \ f(1.5), f(2),$$
 and no other values

$$\bigcirc f(-1), f(2),$$
 and no other values

END DIE -1 & 2.

Question 5

2 pts

Suppose the function f is defined for all real numbers unless otherwise indicated in the table below. Which x-values in the table are critical numbers of f. DNE means "does not exist."

$oldsymbol{x}$	f(x)	f'(x)	x=2, x=5, x=9
0	DNE	DNE	A
2	7	DNE	$\bigcirc x = 5, x = 9$
5	13	0	(x = 0,) $x = 2,$ $x = 5,$ $x = 9,$ $(x = 10)$
8	0	-1	$\bigcirc x \stackrel{\longrightarrow}{=} 0, x = 2, x = 10$
9	-5	0	32UAD3@ 50AUSE
10	DNE	DNE	NOT CRIT #'S BECAUSE
			NOT CRIT #'S DOT DEFI