Math 131 - Test 1

September 15, 2021

Name ________Score _____

Show all work to receive full credit. Supply explanations where necessary. When evaluating limits, you may need to use $+\infty$, $-\infty$, or DNE (does not exist). When classifying discontinuities, use the words *removable*, *nonremovable*, *infinite*, and/or *jump*.

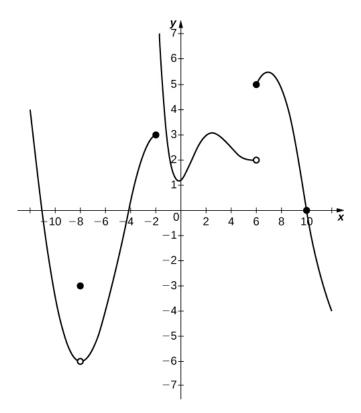
1. (10 points) Think about our definition of *limit*. For each part below, does the table of values justify the given limit (yes or no)? Explain your reasoning.

(a)
$$\lim_{x \to 2} f(x) = 1$$

x	2.1	2.01	2.001	2.0001	2.00001	2.000001
f(x)	1.098363	1.009998	1.001000	1.000100	1.000010	1.000001

(b)
$$\lim_{x \to 0} g(x) = 7$$

x	\parallel 0.01	-0.01	0.001	-0.001	0.0001	-0.0001
g(x)	2.976341	3.001253	4.994369	5.000124	6.999998	7.000002


(c)
$$\lim_{x \to 3.5} h(x) = 8.5$$

\boldsymbol{x}	1.00	2.00	3.00	4.00	5.00	6.00
h(x)	8.342301	8.497634	8.499436	8.500293	8.522341	8.299863

(d)
$$\lim_{x \to 4^+} f(x) = \infty$$

$x \mid$	3.9	3.99	3.999	3.9999	3.99999	3.999999
f(x)	15.3	135.7	12,365.8	1,302,986.4	186, 732, 001.5	2, 332, 986, 094.3

2. (14 points) The graph of y = f(x) is shown below. Use the graph to solve each part of this problem.

- (a) What type of discontinuity does f have at x = 6? Explain your reasoning.
- (b) Estimate $\lim_{x\to 10^+} f(x)$.
- (c) Estimate the value f(-8).
- (d) Based on the graph, Steve believed that $\lim_{x\to -2^-} f(x) = \infty$. Do you agree or disagree? Explain your reasoning.
- (e) Estimate $\lim_{x\to -6} f(x)$.
- (f) What type of discontinuity does f have at x = -8? Explain your reasoning.
- (g) Estimate $\lim_{x\to 6^-} f(x)$.

3. (30 points) Determine each limit **analytically**, or explain why the limit does not exist. You may need to use $+\infty$, $-\infty$, or DNE.

(a)
$$\lim_{w \to 6} \frac{\sqrt{w+3} - 3}{2w - 12}$$

(b)
$$\lim_{x \to 2^+} \frac{x^2 + 7x + 10}{x^2 + 3x + 2}$$

(c)
$$\lim_{h \to -5} \left(\frac{\frac{3}{h} + \frac{3}{5}}{h+5} \right)$$

(d)
$$\lim_{y \to 0} \frac{y}{(y+6)^2 - 36}$$

(e)
$$\lim_{x \to 0} \frac{\tan 3x}{6x}$$

4. (12 points) These limits DO NOT EXIST. Choose any three (3) of them, and clearly tell why the limit fails to exist. If necessary, provide evidence.

(a)
$$\lim_{x \to 7} \frac{9x}{(x-7)^4}$$

(b)
$$\lim_{x\to 0} x^2 \ln x$$

(c)
$$\lim_{x \to 0} \frac{x^2 + 3x}{|x|}$$

(d)
$$\lim_{x \to \pi^+} \left(\frac{x-3}{\tan x} \right)$$

5. (9 points) Suppose that $\lim_{x\to 3} f(x) = 4$ and $\lim_{x\to 3} h(x)$ exists. Determine each limit.

(a)
$$\lim_{x \to 3} [x^2 f(x) + h(x) \sin \pi x]$$

(b)
$$\lim_{x\to 3} [(x-3)f(x)h(x)]$$

(c)
$$\lim_{x\to 3} h(x)$$
 if $\lim_{x\to 3} \frac{f(x)}{h(x)}$ does not exist

6. (9 points) In each problem below, determine whether the limit is $+\infty$, $-\infty$, or DNE. Show work or explain your reasoning.

(a)
$$\lim_{x \to -6^+} \left(\frac{2x+4}{x+6} \right)$$

(b)
$$\lim_{x \to 8} \frac{x^2}{(x-8)^2}$$

(c)
$$\lim_{x \to 7} \left(\frac{x}{x-7} \right)$$

7. (6 points) Find and classify the discontinuities of $F(x) = \frac{x^2 - 4}{(x+3)(x-2)}$. Show work or explain your reasoning.

8. (3 points) Given that $-x^2 \le x^2 \cos \frac{1}{x} \le x^2$ for $x \ne 0$, compute $\lim_{x \to 0} x^2 \cos \frac{1}{x}$. Explain your reasoning.

9. (2 points) Give an example of a rational function whose graph has a hole at x = 1 and a vertical asymptote at x = -1.

- 10. (5 points) Determine whether each statement is true (T) or false (F).
 - (a) _____ If f is continuous at x = c, then f has a limit at x = c.
 - (b) _____ If f has a limit at x = c, then f is defined at x = c.
 - (c) _____ If f has a removable discontinuity at x = 1, then the limit at x = 1 does not exist.
 - (d) _____ If f(5) = 3, then $\lim_{x\to 5} f(x) = 3$.
 - (e) _____ The limit of any basic trigonometric function can always be found by direct substitution.