Math 131 - Quiz 6

Name _____

November 17, 2021

Score _____

Show all work to receive full credit. Supply explanations when necessary. This quiz is due December 1.

1. (2 points) Let $f(x) = x^3 - 6x^2 + 2x + 3$. Use calculus techniques to find open intervals on which the graph of f is concave up/down. Also identify all points of inflection (both coordinates).

- 2. (2 points) Sketch the graph of a continuous function having all of the following properties.
 - f(0) = 0, f'(0) = 0
 - f'(x) < 0 on $(-\infty, 0)$
 - f'(x) > 0 on $(0, \infty)$
 - f''(x) > 0 on (-1,1)
 - f''(x) < 0 on $(-\infty, -1) \cup (1, \infty)$

3. (2 points) Find the limit, showing all work. Do not use L'Hôpital's rule.

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right) \left(\frac{x^2 + 1}{x^2 - 1} \right)$$

4. (2 points) Find the horizontal and vertical asymptotes of the graph of $h(x) = \frac{2-x^2}{x^2+x}$. Show work or explain your reasoning.

5. (2 points) Use L'Hôpital's rule to find each limit.

(a)
$$\lim_{x \to 0} \frac{2x}{e^x - 1}$$

(b) $\lim_{x \to 1^+} \frac{\sin \pi x}{\sqrt{x-1}}$