<u>Math 131 - Test 1</u>

September 23, 2020

Show all work to receive full credit. Supply explanations where necessary. When evaluating limits, you may need to use $+\infty$, $-\infty$, or DNE (does not exist).

1. (6 points) Use a table of numerical values to approximate the following limit. Your table must show function values at six or more points.

$$\lim_{x \to 1} \frac{1 - 2^{x - 1}}{5x - 5}$$

2. (8 points) Let
$$f(x) = \frac{x^2 - 2x - 3}{|x - 3|}$$
.

(a) Compute the limit: $\lim_{x\to 3^+} f(x)$

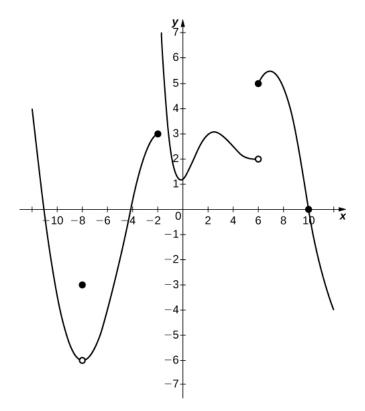
(b) Compute the limit: $\lim_{x\to 3^-} f(x)$

(c) What do the results of parts (a) and (b) tell you about $\lim_{x\to 3} f(x)$?

3. (16 points) In each problem below, determine whether the limit is $+\infty$, $-\infty$, or DNE. Show work or explain your reasoning.

(a)
$$\lim_{x \to 5^+} \frac{x}{x - 5}$$

(b)
$$\lim_{x \to 5^{-}} \frac{x}{x - 5}$$


(c)
$$\lim_{x \to 5} \frac{x}{x - 5}$$

(d)
$$\lim_{x \to 5} \frac{x}{(x-5)^2}$$

4. (8 points) Discuss the continuity of g. At which points is g continuous/discontinuous, and how do you know?

$$g(x) = \begin{cases} 6x + \sin(\pi x), & x \le -1\\ x^2 - 8x - 15, & -1 < x \le 3\\ x\cos(\pi x) - 9x, & x > 3 \end{cases}$$

5. (10 points) Referring to the graph of y = f(x) shown below, determine each of the following or explain why it does not exist.

- (a) $\lim_{x \to 10} f(x)$
- (b) f(-2)
- (c) $\lim_{x \to -8} f(x)$
- (d) $\lim_{x \to -2^+} f(x)$
- (e) $\lim_{x \to 6^-} f(x)$
- 6. (6 points) Refer to the function y = f(x) whose graph is shown above. Classify the discontinuities of f.

7. (24 points) Determine each limit analytically, or explain why the limit does not exist. You may need to use $+\infty$, $-\infty$, or DNE.

(a)
$$\lim_{x \to 0} \frac{\tan \pi x}{5x}$$

(b)
$$\lim_{r \to 3^{-}} \left(\frac{r^2 - 2r - 3}{r^2 - 9} \right)$$

(c)
$$\lim_{x \to 1} \frac{1 - \sqrt{x}}{1 - x}$$

(d)
$$\lim_{t\to 0} \frac{(t+5)^2 - 25}{t}$$

8. (6 points) Determine all vertical asymptotes of the graph of $h(x) = \frac{x^2 + 2x - 8}{x^2 - 4}$. (You can use your graphing calculator for help, but you must show computational work for full credit.)

9. (6 points) Consider the following table of values for the function f.

					-0.001	
f(x)	2.8	3.2	2.98	3.02	2.998	3.002

(a) Given the table of values and no other information, is it possible that $\lim_{x\to 0} f(x)$ does not exist? Explain.

(b) Given the table of values and the fact that f is continuous everywhere, is it possible that $\lim_{x\to 0} f(x)$ does not exist? Explain.

(c) Given the table of values and the fact that f has a removable discontinuity at x=0, is it possible that $\lim_{x\to 0} f(x)$ does not exist? Explain.

- 10. (10 points) Determine whether each statement is true (T) or false (F).
 - (a) _____ If f is defined at x = c, then $\lim_{x \to c} f(x)$ exists.
 - (b) $\lim_{x \to 0} \sqrt{x} = 0$
 - (c) If the graph of f has the vertical asymptote x = 7, then f(7) is not defined.
 - (d) _____ If $\lim_{x\to 2} f(x) = f(2)$, then f is continuous at x=2.
 - (e) _____ The limit of a polynomial function can always be found by direct substitution.
 - (f) _____ If $\lim_{x\to 3} g(x) = 7$, then $\lim_{x\to 3^+} g(x) = 7$.
 - (g) _____ A jump discontinuity might also be a removable discontinuity.
 - (h) _____ If h(-2) = 0, then $\lim_{x \to -2} h(x) = 0$.
 - (i) _____ If f and g are polynomials and g(3) = 0, then the graph of $\frac{f(x)}{g(x)}$ must have a vertical asymptote at x = 3.
 - (j) _____ The limit of a rational function can always be found by direct substitution.