
Math 130 - Test 1 September 11, 2019

Name Key Score

Show all work to receive full credit. Supply explanations where necessary.

1. (6 points) The angle θ lies in standard position and has measure 240°.

(a) Roughly sketch the angle θ .

(b) In which quadrant does θ lie?

(c) Determine the radian measure of θ . Write your answer in the form $\frac{m}{n}\pi$ with the fractional part in lowest terms.

$$940^{\circ} \cdot \frac{\pi}{180^{\circ}} = \frac{94}{18} \pi = \boxed{\frac{4\pi}{3}}$$

(d) Determine two (additional) coterminal angles, one positive and one negative. Write both answers in degree measure.

2. (4 points) Determine the supplement of
$$8\pi/15$$
.

1

(a) Write your answer in radian measure in the form $\frac{m}{n}\pi$.

$$\pi - \frac{8\pi}{15} = \boxed{\frac{7\pi}{15}}$$

(b) Write your answer in degree measure.

$$\frac{7\pi}{15} \cdot \frac{180^{\circ}}{\pi} = \frac{1260^{\circ}}{15} = 84^{\circ}$$

3. (3 points) A 138° angle is swept out on a circle of radius 20 in. Determine the length of the arc. Round your answer to the nearest hundredth of an inch.

Arc Length = RADIAN MERSURE. X RADIUS
$$= (138^{\circ})(\frac{\pi}{180^{\circ}}) \times (30 \text{ in}) \approx (48.17 \text{ in})$$

- 4. (7 points) Vinyl record albums typically have a 12 in diameter, and they play on a turntable at $33\frac{1}{3}$ revolutions per minute.
 - (a) Determine the angular speed of a record album. Give your answer in radians per

minute.
$$\omega = \frac{A NQLE}{TIME} = \frac{(33\frac{1}{3})(3\pi)}{1 \text{ min}} = \frac{200 \pi}{3} \frac{\text{RADIANS}}{\text{min}}$$

$$\approx 209.44 \frac{\text{RAD}}{\text{min}}$$

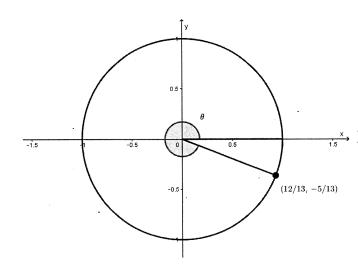
(b) Determine the linear speed of a point on the outer edge of a record album. Give your answer in inches per minute. Write in decimal form, rounded to the nearest tenth.

$$V = \omega \times RADIUS = \left(\frac{300\pi}{3}\right)\left(6\right) in/min = 400\pi in/min$$

$$\approx 1356.6 in/min$$

5. (6 points) Find the exact values of the six trigonometric functions at θ . Write your answers as fractions in lowest terms.

$$\cos \theta = \frac{13}{13}$$


$$\sin \theta = -\frac{5}{13}$$

$$TAN \theta = -\frac{5}{12}$$

SEC
$$\theta = \frac{13}{1a}$$

$$\csc \theta = -\frac{13}{5}$$

$$\cot \tilde{\theta} = -\frac{13}{5}$$

2

6. (6 points) Write the exact values of each of the following. Do not use your calculator.

(a)
$$\cos 60^\circ = \frac{1}{2}$$

(b)
$$\sin(\pi/4)$$
 $\left(\frac{\sqrt{3}}{a}\right)$

(b)
$$\sin(\pi/4)$$
 $\frac{\sqrt{3}}{2}$ (c) $\tan 30^{\circ} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$

(d)
$$\sin(\pi/6) = \frac{1}{2}$$

7. (8 points) The two legs of a right triangle have lengths 4 and 6.

(a) Determine the length of the hypotenuse.

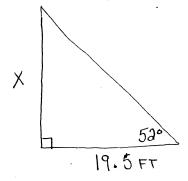
$$h^2 = 16 + 36 = 52$$

$$h = \sqrt{50} = 2\sqrt{13}$$

(b) Let θ be the smallest angle of the triangle. Determine the exact values of the six trigonometric functions at θ . You do not have to rationalize your denominators, but otherwise write your fractions as simple as possible.

$$\sin \theta = \frac{4}{9\sqrt{13}} = \frac{3}{\sqrt{13}}$$

$$\cos \theta = \frac{6}{2\sqrt{13}} = \frac{3}{\sqrt{13}}$$


$$TAN \theta = \frac{4}{6} = \frac{2}{3}$$

$$csc \theta = \frac{\sqrt{13}}{2}$$

SEC
$$\theta = \frac{\sqrt{13}}{3}$$

$$\cot \theta = \frac{3}{a}$$

8. (5 points) A guy wire runs from the ground to the top of a utility pole. The wire is attached to the ground 19.5 ft from the base of the pole, and the angle formed between the wire and the ground measures 52°. Assume that the pole is perpendicular to the ground. How tall is the pole? Round your answer to the nearest tenth of a foot.

$$T_{AN} 50^{\circ} = \frac{X}{19.5}$$

$$SIN Q = \frac{5}{7} = \frac{OPP}{HYP}$$

9. (10 points) Sketch a right triangle with an acute angle α for which $\csc \alpha = \frac{7}{5}$. Then find the values of the other five trigonometric functions at α . You do not have to rationalize your denominators, but otherwise write your fractions as simple as possible.

$$\frac{7}{\sqrt{49-35}}$$

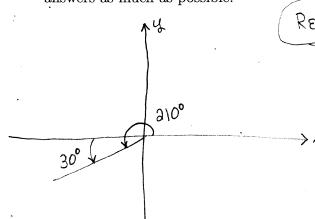
$$= \sqrt{34} = 3\sqrt{6}$$

$$\cos \alpha = \frac{2\sqrt{6}}{17}$$

SEC
$$\alpha = \frac{7}{2\sqrt{6}}$$

$$Sin \alpha = \frac{5}{7}$$
 $CSC \alpha = \frac{7}{5}$

TAN
$$d = \frac{5}{2\sqrt{6}}$$
 Cot $d = \frac{2\sqrt{6}}{5}$


10. (6 points) For each part below, use the information to determine the quadrant in which

(a)
$$\csc\theta < 0$$
, $\sec\theta < 0$ \Rightarrow SINE & COSINE ARE NEG \Rightarrow QUAD 3

(b)
$$\sec \theta < 0$$
, $\cot \theta > 0 \Rightarrow \cos \theta > 0$ $\Rightarrow \cos \theta > 0$ Quad 3

(c)
$$\sec \theta > 0$$
, $\tan \theta > 0 \Rightarrow \cos \rho \cos \sigma$ TAN $\rho \cos \phi \Rightarrow \left(Q_{VAS} \right)$

11. (8 points) $\theta = 210^{\circ}$. Determine the reference angle. Then, without using your calculator, determine the exact values of the six trigonometric functions at θ . Simplify your answers as much as possible.

$$\cos \theta = -\cos 30^{\circ} = -\frac{\sqrt{3}}{2}$$
 $\sec \theta = -\frac{2}{\sqrt{3}}$

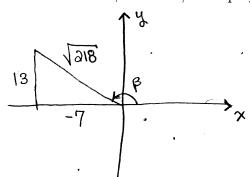
$$S_{N} = -2 \times 30^{\circ} = -\frac{1}{2}$$
 $CSC = -2$

$$TAN \theta = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$
 $COT \theta = \sqrt{3}$

$$SEC \theta = -\frac{a}{\sqrt{3}}$$

$$\csc \theta = -a$$

$$\cot \theta = \sqrt{3}$$


1089 341205

12. (6 points) $\tan \beta = -13/7$ and $\sin \beta > 0$.

Find the exact values of $\sin \beta$ and $\cos \beta$. Simplify your answers as much as possible.

13. (3 points) Starting with the identity $\sin^2\theta + \cos^2\theta = 1$, show how to obtain the new identity $1 + \cot^2 \theta = \csc^2 \theta$.

$$Sin^2 \theta + cos^2 \theta = 1$$

$$\frac{S(N^2\theta)}{S(N^2\theta)} + \frac{Cos^2\theta}{S(N^2\theta)} = \frac{1}{S(N^2\theta)} \Rightarrow 1 + cot^2\theta = csc^2\theta$$

14. (6 points) Use trig identities to transform one side of the equation into the other.

(a)
$$\cos \theta \tan \theta \csc \theta = 1$$

$$\left(\frac{\cos\theta}{1}\right)\left(\frac{\sin\theta}{\cos\theta}\right)\left(\frac{1}{\sin\theta}\right) = 1$$

(b)
$$\frac{\tan \alpha + \cot \alpha}{\tan \alpha} = \csc^2 \alpha$$

15. (5 points) For each equation, determine the amplitude and the period of the graph.

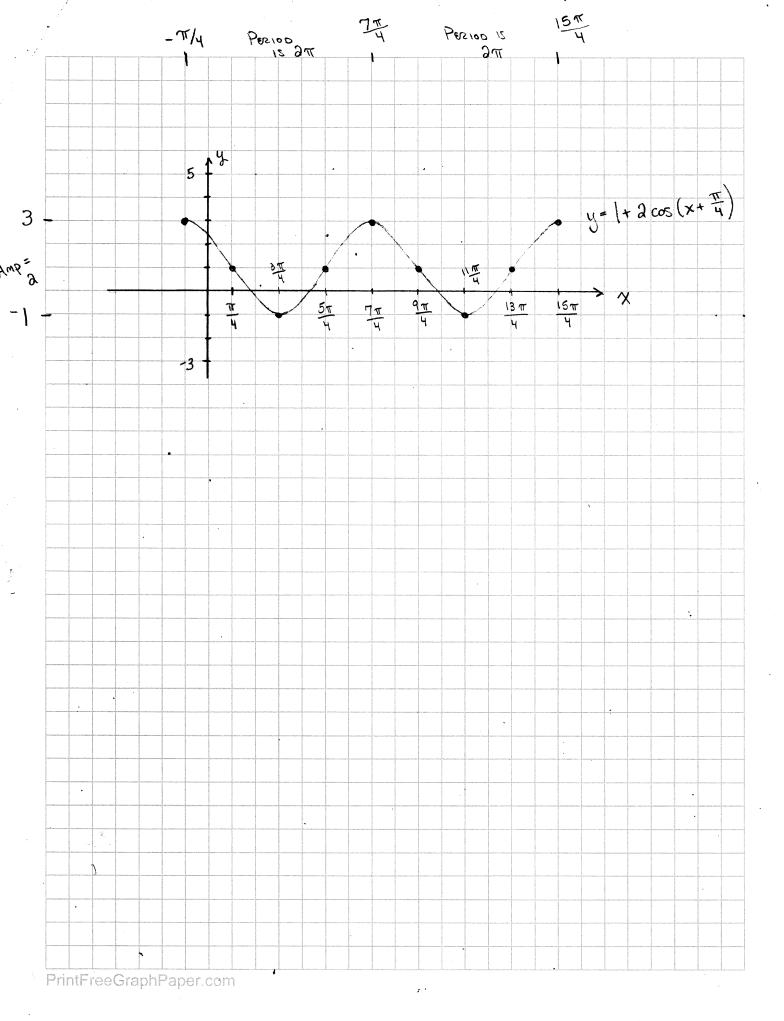
(a)
$$y = -5\sin(x+\pi)$$

$$A_{mp} = |-5| = 5$$
 Period = $\frac{3\pi}{1}$ =

(b) $y = 2 + 5\cos(\frac{\pi}{2}x + 1)$

$$A_{MP} = 5 \cdot P_{\text{EXIOD}} = \frac{2\pi}{\pi/2} = 4$$

16. (4 points) Write an equation whose graph has the given characteristics: a sine curve with period π , an amplitude of 3, a left phase shift of $\pi/5$, and a vertical translation down 8 units.


$$\frac{B}{B} = \pi$$

$$y = -8 + 3 \sin 2\left(x + \frac{\pi}{5}\right)$$

$$A = -8 + 3 \sin\left(3x + \frac{3\pi}{2}\right)$$

17. (7 points) On the attached graph paper, sketch the graph of $y = 1 + 2\cos(x + \frac{\pi}{4})$. Label your graph well enough for a person to read it. (Include two full periods.)

SEE ATTACHED.

