<u>Math 129 - Final Exam B</u> December 11, 2019

Name <u>ke</u>

Show all work to receive full credit. Supply explanations where necessary. Label your axes when graphing.

1. (4 points [11]) Solve for
$$r$$
: $-3|7-2r| = -12$

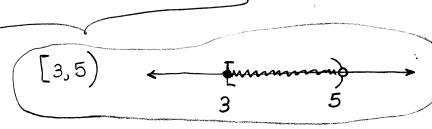
$$|7-ar| = 4$$
 $|7-ar| = 4$
 $|7-ar| = 4$
 $|7-ar| = -1$

$$C = \frac{3}{3}$$

$$C = \frac{11}{3}$$

2. (6 points [3]) Solve for w. Write your solution set in interval notation, and graph it on a number line.

$$3(w+1) - 5 < w+8$$
 and $10 - 3w \le 1$


$$3\omega + 3 = 5 < \omega + 8$$

$$3\omega - \alpha < \omega + 8$$

$$-AND - \omega \ge 3$$

$$\omega \ge 3$$

 $\omega < 5$

Solve for x. Write your answer(s) in decimal form, rounded to the 3. (5 points [7]) nearest hundredth.

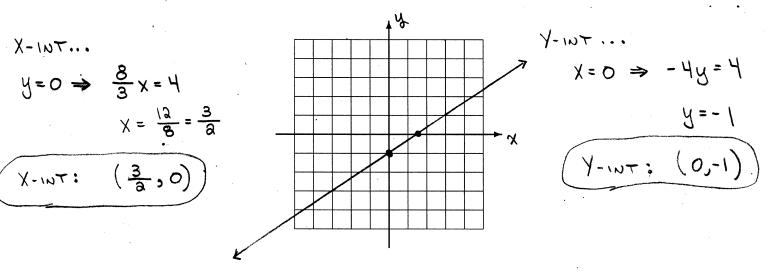
$$2x^2 - 3x - 1 = 0$$

$$X = \frac{3 \pm \sqrt{(-3)^3 - 4(3)(-1)}}{3(3)}$$

$$X = \frac{3+\sqrt{17}}{4} \approx 1.78$$

$$X = \frac{3-\sqrt{17}}{4} \approx -0.28$$

4. (4 points [3,11]) Solve for
$$x$$
: $\frac{5}{x} = \frac{8}{2x-1}$


$$5(3x-1) = 8x$$

$$10x-5 = 8x$$

$$3x = 5$$

$$x = \frac{5}{2}$$

5. (6 points [3]) A line is described by the equation $\frac{8}{3}x - 4y = 4$. Find the x- and y-intercepts of the line. Then plot your intercepts and sketch the line.

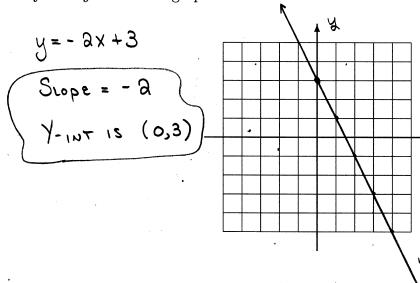
6. (5 points [2,4]) The line L passes through the point (6,4) and is <u>perpendicular</u> to the line given by y = -2x + 1. Find an equation for the line L. Write your final answer in standard form (Ax + By = C).

Stope of
$$L$$
 must be $\frac{1}{3}$

$$(opp. Recip of -3)$$

$$y - 4 = \frac{1}{3}(x-6)$$

$$y - 4 = \frac{1}{3}x - 3$$


$$\frac{1}{3}x - y = -1$$
7. (3 points [1]) Determine the domain of the function $f(x) = \frac{2(x-1)}{(2x+5)(x-3)}$

$$\partial_{X} + 5 = 0 \qquad \qquad \begin{array}{c} (2x+5)(x-3) \\ \lambda + 5 = 0 \qquad \qquad \\ \Rightarrow \chi = -\frac{5}{a} \qquad \Rightarrow \chi = 3 \end{array}$$

Domain of
$$f = Air Rear \#_s except$$

$$\chi = -\frac{5}{2} \notin \chi = 3$$

8. (4 points [2,4]) Determine the slope and y-intercept of the line described by 2x + y = 3. Then graph the line.

9. (4 points [2,3,4]) A street vendor will sell 240 ice cream cones if she sells them for \$2 each, and she will sell 150 cones if she sells them for \$3 each. Determine the linear equation that describes how the demand varies with cost. Say what your variables represent.

$$X = COST$$

$$Y = DEMAND$$

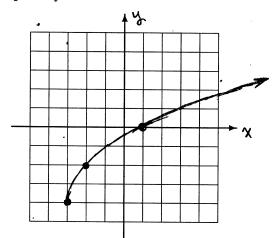
$$(3,840)$$

$$(3,150)$$

$$M = \frac{150 - 340}{3 - 2} = -90$$

10. (6 points [5]) Let $g(x) = x^2 + 5x$. Expand and simplify the difference quotient $\frac{g(x+h)-g(x)}{h}$.

$$\frac{g(x+h)-g(x)}{h}=\frac{\left[(x+h)^2+5(x+h)\right]-\left[x^2+5x\right]}{h}$$


$$= \frac{(x^{2} + 3xh + h^{2} + 5x + 5h) - (x^{2} + 5x)}{h} = \frac{x^{2} + 3xh + h^{2} + 5x + 5h - x^{2} - 5x}{h}$$

$$= \frac{2xh + h^2 + 5h}{h} = \frac{h(2x+h+5)}{h} = \frac{2x+h+5}{h}$$

11. (7 points [8,9,10]) Let $f(x) = 2\sqrt{x+3} - 4$.

y=1x

- (a) Explain how the graph of f can be obtained from the graph of years f
- O SHIFT LEFT 3 UNITS
- 3 SHIFT DOWN 4 UNITS
- (b) Constilly shotch the mould of a (Doubling)
 - (b) Carefully sketch the graph of f.

(c) Determine the domain and range of f.

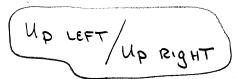
- 12. (6 points [5]) Let $f(x) = 3 + \sqrt{x}$ and $g(x) = \begin{cases} x^2 + 4, & \text{if } x < -2 \\ 3x + 7, & \text{if } x > 0 \end{cases}$.
 - (a) Compute g(-10).

(b) Compute g(-1).

(c) Compute $(g \circ f)(9)$.

$$g(f(9)) = g(6) = 3(6) + 7 = (25)$$

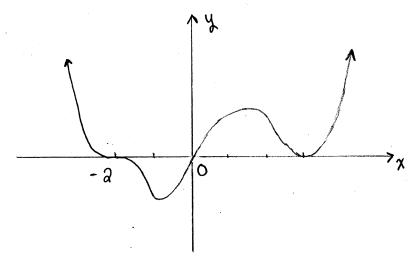
(d) If $h(x) = x^2 + 3$, then what function is $(h \circ f)(x)$? Completely expand and simplify your answer.


$$h(f(x)) = (3+\sqrt{x})^3 + 3 = 9 + 6\sqrt{x} + x + 3$$

$$= (12+6\sqrt{x} + x)$$

- 13. (12 points [11,12,13]) Consider the polynomial $f(x) = 3x(x-3)^2(x+2)^3$.
 - (a) Determine the degree of f.

(b) State the zeros of f and their corresponding multiplicities.

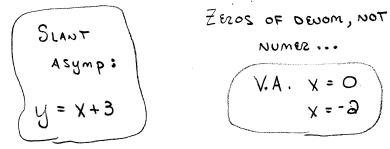

(c) Describe the end behavior of the graph of f.

(d) Determine the y-intercept.

(e) Roughly sketch the graph of f. Be sure that your graph correctly illustrates the y-intercept, the end behavior, and the behavior at the x-intercepts.

(f) Use your graph to solve f(x) > 0. Write your solution in interval notation.

$$f(x) > 0$$
 on $\left(-\infty, -2\right) \cup \left(0, 3\right) \cup \left(3, \infty\right)$


- 14. (4 points [8]) The graph of $f(x) = (x-4)^2 + 3$ is a parabola.
 - (a) Explain how the graph of f can be obtained from the graph of $y = x^2$.

(b) Determine the vertex and an equation for the axis of symmetry of the graph of f.

15. (8 points [13]) Let $f(x) = \frac{x^3 - 4x^2 + 8}{x^2 + 2x}$. Determine the slant asymptote and the vertical asymptotes of the graph of f.

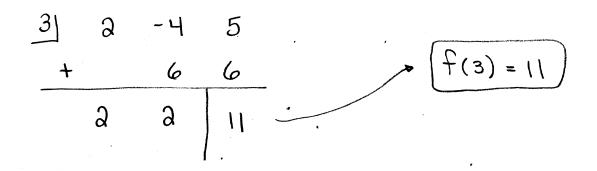
$$\frac{(x^{3} + 2x^{2})}{(x^{3} - 4x^{2} + 0x + 8)} + \frac{(x) = x - 6 + \frac{12x + 8}{x(x + 3)}}{(-6x^{2} + 0x + 8)} + \frac{(-6x^{2} - 12x)}{(-6x^{2} - 12x)} + \frac{(-6x^{2} - 12x)}{(-6x^{2} - 12x)$$

$$f(x) = x - \varphi + \frac{x(x+9)}{13x+8}$$

16. (4 points [13]) Let
$$R(x) = \frac{x^3 + x^2}{7x(x+3)(x-9)}$$
.

(a) Determine any horizontal asymptotes of the graph of R.

LEADING TERM OF NUMBER =
$$X^3$$

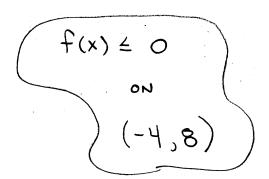

LEADING TERM OF DENOM = $7x^3$

H.A. $y = \frac{1}{7}$

(b) Explain why x = 0 is NOT a vertical asymptote of the graph of R.

$$\frac{x^{3}+x^{3}}{7x(x+3)(x-9)} = \frac{x^{3}+x}{7(x+3)(x-9)}$$

17. (4 points [12]) Use synthetic division and the remainder theorem to evaluate f(3) if $f(x) = 2x^2 - 4x + 5$.


18. (8 points [11,12,13]) Solve the inequality and write your solution in interval notation. Show all work.

$$\frac{(x-3)^2}{(x+4)(x-8)} \le 0$$

ZEROS OF NUMER:

ZEROS OF DEWOM:

Test Test Test Test
$$X=0$$
 $X=5$ $X=9$ $Y=9$ $Y=9$ $Y=9$

