Math 109 - Test 1B

February 13, 2020

Name _______Score _____

Show all work to receive full credit. Supply explanations where necessary.

1. (4 points [3]) Which of these equations ARE linear equations? Circle all that apply.

$$\frac{x+5}{6} + 3 = \frac{x}{7}$$
, $4x = 7(2-x)$, $(3x+2)^{3/2} = 4$, $3x(x-8) = x$

2. (3 points [3]) Solve for x: 5x - 12 = 9

3. (4 points [3]) Solve for y:
$$\frac{3y-6}{-7} = 6$$

4. (4 points [3]) Yesterday, David rode his bike at the speed of 15 miles per hour. Today, he rode at 12 miles per hour. In the two days, he biked for a combined total time of 7 hours. Let x be the number of hours he biked yesterday. Write an algebraic expression in terms of the single variable x that gives the total number of miles he biked in the two days. (Remember that distance equals rate times time.)

5. (3 points [3]) Solve for x: $6-9x \ge 51$

6. (4 points [3]) Solve for w: 6w - (7 - 2w) = 4(w - 2) + 4w + 1

7. (3 points [3]) In a work zone on a certain highway, you cannot drive slower than 30 mph and you cannot drive faster than 45 mph. Use x to represent speed (in mph), and write an inequality that describes the speeds you can drive.

8. (5 points [3]) Solve for y. Write your solution set in interval notation, and graph it on a number line.

$$8y + 14 \le 2(3 + 2y) + 7y$$

9. (4 points [3]) Solve for x: $5x + 9 > \frac{5}{2}(4 + 2x)$

10. (6 points [3]) Solve for y. Write your solution set in interval notation, and graph it on a number line.

$$3(y-4) + 2y < 3$$
 and $7-2y \le 13$

11. (3 points [3]) Kate Jindo sells her famous, craft hot sauce for \$9 per bottle. Let b represent the number of bottles that Kate will sell at the farmer's market. Kate would like to make at least \$400. Write an inequality involving b that Kate could solve to determine the numbers of bottles she must sell.

12. (4 points [7]) Solve for x: 3(8x-3)(x+6) = 0

13. (4 points [1,9]) Determine the values of x that are restricted from the following expression: $\frac{x-9}{x^2+4x-21}$

14. (4 points [1,3,9]) Solve for y: $\frac{5}{y-4} = \frac{8}{y}$

15. (4 points [1,3,9]) Solve for x: $7 - \frac{4}{x+4} = \frac{x}{x+4}$

16. (5 points [7]) Solve for t: $t^2 + 2t - 13 = 2$

17. (4 points [9]) Solve for u: $13 + \sqrt{5u + 1} = 4$

18. (5 points [9]) Solve for x. Round your final answer(s) to the nearest hundredth.

$$\sqrt[3]{2x+5} - 3 = 0$$

19. (6 points [7]) Solve for x. Write your final answer(s) in decimal form, rounded to the nearest hundredth.

$$2x^2 - 3x - 1 = 0$$

20. (3 points [9]) The following equation is "quadratic in form." In order to solve it, what substitution would be most helpful? (Do not solve the equation.)

$$(x^3+1)^2 + 3(x^3+1) + 2 = 0$$

21. (4 points [9]) Solve for v: $(3v-7)^{1/5}-1=1$

22. (4 points [9]) Solve for x. Round your answer(s) to the nearest hundredth.

$$(x-2)^3 + 15 = 3$$

23. (10 points [3,7,9]) Solve for x: $\frac{6}{(x-1)(x-3)} = 1 + \frac{3}{x-3}$