The integration by parts formula

By now you are certainly aware of the fact that for every basic differentiation
rule, there is a related antidifferentiation, or integration, rule. Just to refresh
your memory, consider these familiar examples:
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In this section you will be introduced to the integration rule that is related
to the product rule. This new rule, or technique, is called integration by parts.

Recall that the product rule states

2 () = F@)g' @) + /@),

After integrating both sides, we obtain

f(@)g(z) = / f(@)g (@) da + / f(@)g(z) d.

This is the integration by parts formula, but most often it is written in the

following form:

/ f(@)g (@) dz = f(z)g(z) — / f(@)g(z) d. (1)

Many of you will prefer to remember the more compact form obtained by

substituting « = f(x) and v = g(x):

/udv:uv—/vdu. (2)

Although the need for the integration by parts formula may not be immedi-

ately obvious, we will see that it is remarkably useful when evaluating integrals

/wem dx, /x3 Inxzdx, and /sec3xdx.

The integration by parts formula is a reduction formula. After applying it,

such as

we will still have another integral to evaluate. Our hope is that the remaining
integral is in some sense easier than the original.

In order to integrate by parts, you must first choose v = f(z) and dv =
¢'(x) dx. For beginners, this choice is often difficult. u must be easy to differen-

tiate (which by now is the case for most elementary functions), and v must be



easily obtained from dv. As if that’s not enough to keep in mind, the product
v du must also be easy to integrate, or at the very least, no more difficult than
udv.

Let’s take a look at a first example. Given enough time, you could probably

guess the following integral, but it is a very typical integration by parts problem.

Example 1  Use integration by parts to evaluate / rsinzxdz.

There are two obvious choices for v and dv: v = x, dv = sinx dx or
u = sinx, dv = x dx. Which choice should we make? With either
choice, the functions are easy to differentiate and integrate. So

which choice gives a simpler v du? Let’s try them both.

u ==z, dv =sinzdzr — du =dx, v=—cosx
. 1,
u=sinz, dv=xdzx o du = cosx dzx, vzix

While either choice could be used in the integration by parts
formula, only the first choice gives a simpler v du. It would be

easier to work with this choice.
/xsinxda: = —xCcosT — / —cosxdr
/xsinxdw = —xcosx + /cosxdw
/xsinxdw = —xcosx +sinx + C

In the example above, the constants of integration were ignored until the very

end. We'll always do this. Just don’t forget to include a constant at the end.

Example 2 Try this one on your own. Integrate: / ze® dz.

Choosing v and dv

Choosing u and dv wisely gets easier with experience. Until you gain that
experience, the acronym LIATE may help you.
LIATE is derived from the first letters of the five basic types of functions you

will encounter in an integral: Logarithmic, Inverse trigonometric, Algebraic,



Trigonometric, Exponential. As a general rule of thumb, choose u in (2) ac-
cording to LIATE!. That is, choose u as the type of function that appears first
in LIATE. For example, if an integrand involves the product of an exponen-
tial function and a trigonometric function, we would choose u to the the trig

function.

Integration by Parts

/udvzuv—/vdu

Choose u according to LTATE.

2
Example 3 Use integration by parts to evaluate / 3 Inzdz.
1

We'll first evaluate the indefinite integral [ 2® Inx dz, and then we’ll
tackle the bounds. According to LIATE, we choose u = Inz and
dv = 3 dx. Tt follows that

1 1
du==dz, v=-z
T 4

So, according to the integration by parts formula,

1 1
/x3lnxdx = Zx‘llnx—/zxgdx

= ix‘llnx—%x‘l—i—C

Therefore,
/2x3lnazda: = lx4lnx‘2—ix4 ‘2
1 4 116 I

— (4m2-0)— (1-%)

ISome people prefer to use LIPTE for Logarithmic, Inverse trig, Polynomial, Trig,

Exponential.



Based on the previous example, this next statement is probably obvious.

Nonetheless, it’s worthwhile to make the point.

Integration by Parts - Definite Integrals
x=b =b z=b
/ wdv = uv - / vdu
r=a Tr=a r=a

Example 4 Try this one on your own:  Find the area of the region bounded

above by the graph of f(z) = (22 — 1)Inz and below by the z-axis over the
interval 1 < z < 3.

Repeated Integration by Parts

Occasionally an integration problem may require two or more applications of

the integration by parts formula. A typical example is the following.

Example 5 Integrate: /xze% dx.

According to LIATE, we choose v = 2% and dv = €2* dz. With this
choice we have
1 2z

du =2xdx, v= 56

and our integral becomes

1
/xQeQ‘T dx = §$262m — /a:ez"? dx.

The integral that remains requires integration by parts. Focusing

on that integral, we choose u = x and dv = €2? dz. This gives

1
du =d = —¢?7,
U X, U 26

Being very careful with the subtraction, we now have
1 1 1
/xzezx dr = §$262I — 5;562‘” + / 56230 dz.
And finally,

1 1 1
/:E2€2w dx = §$262I — Exe% + Ze% + C.



Example 6 Try this one on your own. Integrate: / 22 cos x dx.

Example 7 Rotate the 1st quadrant region bounded by the graphs of y = In z,
y =0, 2 =1, and x = 2 about the z-axis. Use the disk method to find the

volume of the solid that is generated.

We start by sketching a graph of the bounded region.
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Figure 1: Graph for Example 7.

Using the disk method, we find that the volume is given by

2
V:w/ (Inz)? da.
1

Although its far from obvious, this integral is best tackled by
parts. According to LIATE, we choose u = (Inx)? and dv = du.
This gives

du=2(lnx)édx, v=1x

and

2 2 2
V= 7T/ (Inz)? do = ﬂ'a:(lnx)z‘ - 271'/ Inzdz.
1 1 1

The rest is left as an exercise. You should get

V =27 [(In2)? — 2In2 + 1] units® ~ 0.591616 units®.



Recurring Integrals

When integrating by parts, it is not uncommon for the original integrand to

show up for a second time. The next example is the first to illustrate this point.

Example 8 Use integration by parts to evaluate / sinx cosx dx.

Typically this problem would be handled by a simple substitution,
but we’ll use parts. You may be tempted to use LIATE and
choose u = 1 and dv = sinx cosx dx. In doing so, notice that
we would need to evaluate the original integral to find v. This
can’t be right, so let’s choose u = sinx and dv = cosxdz. It
follows that du = cosx dr and v = sinx and, after applying the

integration by parts formula, we obtain
/sinx cosx dr = sin® x — /sinx coszdzr.

The original integral has reappeared! If we continue to integrate
by parts, it will continue to reappear. However, if we get clever

and simply add the integral to both sides of the equation, we get
2/sinx cosxdx = sin® x + C.

In past examples we have introduced the constant C' after the
final integration. In this case, we have gotten around doing a
final integration. Our integration problem is solved after dividing
by 2:

/sinx cosxdr = %sinza: +C.

Example 9 Integrate: / sec® z dz.

As in Example 8, LIATE is not very helpful. However, a moment’s
consideration might lead us to try u = secx and dv = sec? x dx.

This gives du = secztanx dz, v = tanx, and
/sec3 xdx = secxtanx — /secxtan2 xdx.

2

Using the Pythagorean identity 1 + tan? z = sec? x, we obtain

/sec3 xdr =secxtanx — /(sec3 x —secx) dx



or

2/sec3xda: = secxtanx—i—/secxdaz

= secxtanz + In|secx + tan x| + C.

Our final result is

1 1
/sec3xdx = §secxtanx+ §ln|secx+tanx| +C.

Example 10 Try this one on your own. Integrate: / e’ cosx dz. (Hint: In-

tegrate by parts twice, using LIATE each time. Watch for a recurring integral!)

The Tabular Method

When repeated applications of the integration by parts formula are required, it
is often convenient to organize the computations in a table. This is illustrated

below where the indefinite integral [ z°cosz dz is evaluated.

signs uw and du/dz dv/dz and [ dv
cosx
sin

—sinx

- 23
\
— 327
\
—_— > 6x —cosx
\
— 6
\
0

COS T

/a:gcosa:da: = a:gsina:—3x2(—cosx)—|—6x(—sina:)—6cosx—|—/0-cosazda:

= 2%sinz + 3z%cosx — 6z sinz — 6cosx + C



The first column in the table contains alternating signs starting with +, the
second column contains u and subsequent derivatives, and the third contains
dv/dx and subsequent antiderivatives. We read the table across from the sign
and then diagonally downward from u to v. Each repetition of this pattern
represents one application of the integration by parts formula (well, techni-
cally, one-half an application). Notice that in the example above, we eventually
reached a zero derivative in the middle column. This certainly indicates an end

to the process, but we could stop at any point as illustrated here:

signs w and du/dz dv/dz and [ dv
+ x3 cosx
 —_— > 322 sinx
+ 62 —cosT

We conclude that

/x3cosxda::x3sinx—|—3az2cosx—/chosxdx.

Example 11  Try this one on your own:  Use the tabular method to evaluate
€® cos x dzr. Stop when when table has three rows. Compare your results with

those of Example 10.

Fourier Analysis

The tabular method of integration by parts works especially well for integrals
of the form /a:" sinz dz, /az" cosxzdzx, or | x"e”dx. These types of integrals
frequently arise in an application called Fourier analysis. Without going into

great detail, here is the main idea:



Theorem 1 Suppose f is a continuous function on the interval [—¢,f]. Then

f can be approximated on (—£,£) by the sum
a M nrr o nmTT
?O—l—;ancosT—i—;bnsinT (3)
where a,, and by, are called Fourier coefficients and are given by

1/ nwT 1/f . NTX
an—z/_ef(x)cosTda: and bn—z/_ef(a?)blanx.

Furthermore, the approximation gets better as M increases.

Example 12 Find the Fourier coefficients of the function f(z) = 2® on the
interval (—1,1).
Let’s start by computing the a,’s. For n =0,1,2,3,..., a, is given
by the definite integral
1
ay, = / ) 2% cosnrax du.

For any whole number n, the integrand is an odd function. There-
fore, we can save some work and immediately conclude that each

a, is zero.

We now focus on b,’s. Forn =1,2,3,..., b, is given by the definite

1
/ 22 sinnrx dr.

-1

integral

For any natural number n, the integrand is an even function.
Therefore

1 1
b, = / 22 sinnra de = 2/ 2% sinnra de.
—1 0

We can now use the tabular method of integration by parts to

evaluate the integral and determine b,,.



signs uw and du/dx dv/dz and [ dv

+ \ Sln nmwr
- —_— > \ — COS nmwT
4+ —_— ——— sinnnx
\ TL27T2
— —— COSNTT
\ n3m3
+ L
sinnmx
nimd
a3 x? 6x . !
b, =2 —— cosnmx —|— 5 sinnmz + 5 COSNTT — —— sinnnx
nmw 27 3 nimw 0
1 6 12 — 2n272
b, =2 | —cosnm + ——— cosnw | = —————(—1)"
" <mr n3m3 ) n3m3 (=1)
Now according to Theorem 1, the following approximation is
valid on the interval from x = —1 to x = 1:
12 — 2n2n .
A Z 53 —1)" sinnwa.

In addition, the approximation gets better as M increases.

Shown below are the graphs of f(z) = #® and the approximating
sums for M =5 and M = 10, respectively.
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Figure 2: Graphs of y = 2 and the approximating sums from Theorem 1 with
M =5 and M = 10.

Example 13 Try this one on your own:  Find the Fourier coefficients of

the function g(z) = 22, -7 < x < 7.

Taylor Polynomials

Early in Calculus I you encountered tangent lines and linearizations. Recall

that the linearization of f at ¢ is defined by
L(z) = f(e) + f'(e)(z — o).

L is simply the linear function whose graph is tangent to that of y = f(x) at

the point (¢, f(c)). In practice, L(z) often provides a reasonable approximation

11



for f(x) if x is close to c.
The idea of the linearization is generalized in the following theorem. Its
proof involves an interesting theoretical application of repeated integration by

parts.

12



Exercises

Routine Problems

Choose u and dv, determine the corresponding v and du, and write a sentence

explaining why you think your choice was a good one.

1. /a:lna:da:

2. /xzsin?)xdx
3. /xsinfla:Qda:
4. /lnxdx

D. /taun*1 2z dz

6. /62'7” sin 3x dx

Evaluate each integral.

7. /sinflxdx
Inx
Non-Typical Integration by Parts Problems

Each of the following integrals can be evaluated without resorting to integration
by parts. Oh welll Use integration by parts anyway. By careful, LIATE may
not apply.

9. /x\/x— ldz

10. /cosx sinx dx

13



Recurring Integrals
In each of the following problems be on the lookout for recurring integrals.

11. /ezxsini’)xdw
12. /cos2x sin 5x dx

13. / sec’x dx

Miscellaneous Problems

14. Evaluate the indefinite integral /(sirf1 z)% dx.

15. The bounded region in Example 4 is rotated about the y-axis to form a
solid. Find the volume of that solid.

16. The bounded region in Example 4 is rotated about the line z = 1 to form

a solid. Find the volume of that solid.

17. Consider the indefinite integral / sinax cosbx dx, where a and b are
nonzero real numbers with a? # b2.
(a) Use integration by parts to evaluate the integral.

(b) Use the appropriate trigonometric product-to-sum formula to sim-

plify the integrand. Then evaluate.

(¢) Use a CAS (computer algebra system) to evaluate the integral.

18. (a) Use integration by parts to evaluate / sin!zdz. (b) Explain how

the figure below can be used to arrive at the same conclusion.
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