
The integration by parts formula

By now you are certainly aware of the fact that for every basic differentiation

rule, there is a related antidifferentiation, or integration, rule. Just to refresh

your memory, consider these familiar examples:

d

dx

xn+1

n+ 1
= xn =⇒

∫

xn dx =
xn+1

n+ 1
+ C

d

dx
sinx = cosx =⇒

∫

cosx dx = sinx+ C

In this section you will be introduced to the integration rule that is related

to the product rule. This new rule, or technique, is called integration by parts.

Recall that the product rule states

d

dx
f(x)g(x) = f(x)g′(x) + f ′(x)g(x).

After integrating both sides, we obtain

f(x)g(x) =

∫

f(x)g′(x) dx+

∫

f ′(x)g(x) dx.

This is the integration by parts formula, but most often it is written in the

following form:
∫

f(x)g′(x) dx = f(x)g(x)−
∫

f ′(x)g(x) dx. (1)

Many of you will prefer to remember the more compact form obtained by

substituting u = f(x) and v = g(x):
∫

u dv = uv −
∫

v du. (2)

Although the need for the integration by parts formula may not be immedi-

ately obvious, we will see that it is remarkably useful when evaluating integrals

such as
∫

xex dx,

∫

x3 ln x dx, and

∫

sec3 x dx.

The integration by parts formula is a reduction formula. After applying it,

we will still have another integral to evaluate. Our hope is that the remaining

integral is in some sense easier than the original.

In order to integrate by parts, you must first choose u = f(x) and dv =

g′(x) dx. For beginners, this choice is often difficult. u must be easy to differen-

tiate (which by now is the case for most elementary functions), and v must be
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easily obtained from dv. As if that’s not enough to keep in mind, the product

v du must also be easy to integrate, or at the very least, no more difficult than

u dv.

Let’s take a look at a first example. Given enough time, you could probably

guess the following integral, but it is a very typical integration by parts problem.

Example 1 Use integration by parts to evaluate

∫

x sinx dx.

There are two obvious choices for u and dv: u = x, dv = sinx dx or

u = sinx, dv = x dx. Which choice should we make? With either

choice, the functions are easy to differentiate and integrate. So

which choice gives a simpler v du? Let’s try them both.

u = x, dv = sinx dx =⇒ du = dx, v = − cosx

u = sinx, dv = x dx =⇒ du = cosx dx, v =
1

2
x2

While either choice could be used in the integration by parts

formula, only the first choice gives a simpler v du. It would be

easier to work with this choice.
∫

x sinx dx = −x cosx−
∫

− cosx dx

∫

x sinx dx = −x cosx+

∫

cosx dx

∫

x sinx dx = −x cosx+ sinx+ C

In the example above, the constants of integration were ignored until the very

end. We’ll always do this. Just don’t forget to include a constant at the end.

Example 2 Try this one on your own. Integrate:

∫

xex dx.

Choosing u and dv

Choosing u and dv wisely gets easier with experience. Until you gain that

experience, the acronym LIATE may help you.

LIATE is derived from the first letters of the five basic types of functions you

will encounter in an integral: Logarithmic, Inverse trigonometric, Algebraic,
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Trigonometric, Exponential. As a general rule of thumb, choose u in (2) ac-

cording to LIATE1. That is, choose u as the type of function that appears first

in LIATE. For example, if an integrand involves the product of an exponen-

tial function and a trigonometric function, we would choose u to the the trig

function.

Integration by Parts

∫

u dv = uv −
∫

v du

Choose u according to LIATE.

Example 3 Use integration by parts to evaluate

∫ 2

1

x3 lnx dx.

We’ll first evaluate the indefinite integral
∫

x3 lnx dx, and then we’ll

tackle the bounds. According to LIATE, we choose u = lnx and

dv = x3 dx. It follows that

du =
1

x
dx, v =

1

4
x4.

So, according to the integration by parts formula,

∫

x3 lnx dx =
1

4
x4 lnx−

∫

1

4
x3 dx

=
1

4
x4 lnx− 1

16
x4 + C

Therefore,

∫ 2

1

x3 lnx dx =
1

4
x4 lnx

∣

∣

∣

2

1

− 1

16
x4

∣

∣

∣

2

1

= (4 ln 2− 0)−
(

1− 1

16

)

1Some people prefer to use LIPTE for Logarithmic, Inverse trig, Polynomial, Trig,

Exponential.
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Based on the previous example, this next statement is probably obvious.

Nonetheless, it’s worthwhile to make the point.

Integration by Parts - Definite Integrals

∫

x=b

x=a

u dv = uv
∣

∣

∣

x=b

x=a

−
∫

x=b

x=a

v du

Example 4 Try this one on your own: Find the area of the region bounded

above by the graph of f(x) = (x2 − 1) lnx and below by the x-axis over the

interval 1 ≤ x ≤ 3.

Repeated Integration by Parts

Occasionally an integration problem may require two or more applications of

the integration by parts formula. A typical example is the following.

Example 5 Integrate:

∫

x2e2x dx.

According to LIATE, we choose u = x2 and dv = e2x dx. With this

choice we have

du = 2x dx, v =
1

2
e2x

and our integral becomes
∫

x2e2x dx =
1

2
x2e2x −

∫

xe2x dx.

The integral that remains requires integration by parts. Focusing

on that integral, we choose u = x and dv = e2x dx. This gives

du = dx, v =
1

2
e2x.

Being very careful with the subtraction, we now have
∫

x2e2x dx =
1

2
x2e2x − 1

2
xe2x +

∫

1

2
e2x dx.

And finally,
∫

x2e2x dx =
1

2
x2e2x − 1

2
xe2x +

1

4
e2x + C.
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Example 6 Try this one on your own. Integrate:

∫

x2 cosx dx.

Example 7 Rotate the 1st quadrant region bounded by the graphs of y = lnx,

y = 0, x = 1, and x = 2 about the x-axis. Use the disk method to find the

volume of the solid that is generated.

We start by sketching a graph of the bounded region.

0.5 1 1.5 2
x

0.2

0.4

0.6

0.8

1
y

0.5 1 1.5 2
x

0.2

0.4

0.6

0.8

1
y

Figure 1: Graph for Example 7.

Using the disk method, we find that the volume is given by

V = π

∫ 2

1

(ln x)2 dx.

Although its far from obvious, this integral is best tackled by

parts. According to LIATE, we choose u = (ln x)2 and dv = dx.

This gives

du = 2(lnx)
1

x
dx, v = x

and

V = π

∫ 2

1

(lnx)2 dx = πx(ln x)2
∣

∣

∣

2

1

− 2π

∫ 2

1

lnx dx.

The rest is left as an exercise. You should get

V = 2π
[

(ln 2)2 − 2 ln 2 + 1
]

units3 ≈ 0.591616 units3.
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Recurring Integrals

When integrating by parts, it is not uncommon for the original integrand to

show up for a second time. The next example is the first to illustrate this point.

Example 8 Use integration by parts to evaluate

∫

sinx cosx dx.

Typically this problem would be handled by a simple substitution,

but we’ll use parts. You may be tempted to use LIATE and

choose u = 1 and dv = sinx cosx dx. In doing so, notice that

we would need to evaluate the original integral to find v. This

can’t be right, so let’s choose u = sinx and dv = cosx dx. It

follows that du = cosx dx and v = sinx and, after applying the

integration by parts formula, we obtain
∫

sinx cosx dx = sin2 x−
∫

sinx cosx dx.

The original integral has reappeared! If we continue to integrate

by parts, it will continue to reappear. However, if we get clever

and simply add the integral to both sides of the equation, we get

2

∫

sinx cosx dx = sin2 x+ C.

In past examples we have introduced the constant C after the

final integration. In this case, we have gotten around doing a

final integration. Our integration problem is solved after dividing

by 2:
∫

sinx cosx dx =
1

2
sin2 x+ C.

Example 9 Integrate:

∫

sec3 x dx.

As in Example 8, LIATE is not very helpful. However, a moment’s

consideration might lead us to try u = secx and dv = sec2 x dx.

This gives du = secx tanx dx, v = tanx, and
∫

sec3 x dx = secx tanx−
∫

secx tan2 x dx.

Using the Pythagorean identity 1 + tan2 x = sec2 x, we obtain
∫

sec3 x dx = secx tanx−
∫

(sec3 x− secx) dx
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or

2

∫

sec3 x dx = secx tanx+

∫

secx dx

= secx tanx+ ln | secx+ tanx|+ C.

Our final result is
∫

sec3 x dx =
1

2
secx tanx+

1

2
ln | secx+ tanx|+ C.

Example 10 Try this one on your own. Integrate:

∫

ex cosx dx. (Hint: In-

tegrate by parts twice, using LIATE each time. Watch for a recurring integral!)

The Tabular Method

When repeated applications of the integration by parts formula are required, it

is often convenient to organize the computations in a table. This is illustrated

below where the indefinite integral

∫

x3 cosx dx is evaluated.

signs u and du/dx dv/dx and
∫

dv

+ x3 cosx

− 3x2 sinx

+ 6x − cosx

− 6 − sinx

+ 0 cosx

∫

x3 cosx dx = x3 sinx− 3x2(− cosx) + 6x(− sinx)− 6 cosx+

∫

0 · cosx dx

= x3 sinx+ 3x2 cosx− 6x sinx− 6 cosx+ C
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The first column in the table contains alternating signs starting with +, the

second column contains u and subsequent derivatives, and the third contains

dv/dx and subsequent antiderivatives. We read the table across from the sign

and then diagonally downward from u to v. Each repetition of this pattern

represents one application of the integration by parts formula (well, techni-

cally, one-half an application). Notice that in the example above, we eventually

reached a zero derivative in the middle column. This certainly indicates an end

to the process, but we could stop at any point as illustrated here:

signs u and du/dx dv/dx and
∫

dv

+ x3 cosx

− 3x2 sinx

+ 6x − cosx

We conclude that
∫

x3 cosx dx = x3 sinx+ 3x2 cosx−
∫

6x cosx dx.

Example 11 Try this one on your own: Use the tabular method to evaluate
∫

ex cosx dx. Stop when when table has three rows. Compare your results with

those of Example 10.

Fourier Analysis

The tabular method of integration by parts works especially well for integrals

of the form

∫

xn sinx dx,

∫

xn cosx dx, or

∫

xnex dx. These types of integrals

frequently arise in an application called Fourier analysis. Without going into

great detail, here is the main idea:
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Theorem 1 Suppose f is a continuous function on the interval [−ℓ, ℓ]. Then

f can be approximated on (−ℓ, ℓ) by the sum

a0
2

+
M
∑

n=1

an cos
nπx

ℓ
+

M
∑

n=1

bn sin
nπx

ℓ
(3)

where an and bn are called Fourier coefficients and are given by

an =
1

ℓ

∫ ℓ

−ℓ

f(x) cos
nπx

ℓ
dx and bn =

1

ℓ

∫ ℓ

−ℓ

f(x) sin
nπx

ℓ
dx.

Furthermore, the approximation gets better as M increases.

Example 12 Find the Fourier coefficients of the function f(x) = x3 on the

interval (−1, 1).

Let’s start by computing the an’s. For n = 0, 1, 2, 3, . . . , an is given

by the definite integral

an =

∫ 1

−1

x3 cosnπxdx.

For any whole number n, the integrand is an odd function. There-

fore, we can save some work and immediately conclude that each

an is zero.

We now focus on bn’s. For n = 1, 2, 3, . . . , bn is given by the definite

integral
∫ 1

−1

x3 sinnπxdx.

For any natural number n, the integrand is an even function.

Therefore

bn =

∫ 1

−1

x3 sinnπxdx = 2

∫ 1

0

x3 sinnπxdx.

We can now use the tabular method of integration by parts to

evaluate the integral and determine bn.
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signs u and du/dx dv/dx and
∫

dv

+ x3 sinnπx

− 3x2
−1

nπ
cosnπx

+ 6x
−1

n2π2
sinnπx

− 6
1

n3π3
cosnπx

+ 0
1

n4π4
sinnπx

bn = 2

(

− x3

nπ
cosnπx+

3x2

n2π2
sinnπx +

6x

n3π3
cosnπx− 6

n4π4
sinnπx

) ∣

∣

∣

∣

1

0

bn = 2

(−1

nπ
cosnπ +

6

n3π3
cosnπ

)

=
12− 2n2π2

n3π3
(−1)n

Now according to Theorem 1, the following approximation is

valid on the interval from x = −1 to x = 1:

x3 ≈
M
∑

n=1

12− 2n2π2

n3π3
(−1)n sinnπx.

In addition, the approximation gets better as M increases.

Shown below are the graphs of f(x) = x3 and the approximating

sums for M = 5 and M = 10, respectively.
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Figure 2: Graphs of y = x3 and the approximating sums from Theorem 1 with

M = 5 and M = 10.

Example 13 Try this one on your own: Find the Fourier coefficients of

the function g(x) = x2,−π < x < π.

Taylor Polynomials

Early in Calculus I you encountered tangent lines and linearizations. Recall

that the linearization of f at c is defined by

L(x) = f(c) + f ′(c)(x − c).

L is simply the linear function whose graph is tangent to that of y = f(x) at

the point (c, f(c)). In practice, L(x) often provides a reasonable approximation
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for f(x) if x is close to c.

The idea of the linearization is generalized in the following theorem. Its

proof involves an interesting theoretical application of repeated integration by

parts.

12



Exercises

Routine Problems

Choose u and dv, determine the corresponding v and du, and write a sentence

explaining why you think your choice was a good one.

1.

∫

x lnx dx

2.

∫

x2 sin 3x dx

3.

∫

x sin−1 x2 dx

4.

∫

lnx dx

5.

∫

tan−1 2x dx

6.

∫

e2x sin 3x dx

Evaluate each integral.

7.

∫

sin−1 x dx

8.

∫

lnx

x2
dx

Non-Typical Integration by Parts Problems

Each of the following integrals can be evaluated without resorting to integration

by parts. Oh well! Use integration by parts anyway. By careful, LIATE may

not apply.

9.

∫

x
√
x− 1 dx

10.

∫

cosx sinx dx
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Recurring Integrals

In each of the following problems be on the lookout for recurring integrals.

11.

∫

e2x sin 3x dx

12.

∫

cos 2x sin 5x dx

13.

∫

sec5x dx

Miscellaneous Problems

14. Evaluate the indefinite integral

∫

(sin−1 x)2 dx.

15. The bounded region in Example 4 is rotated about the y-axis to form a

solid. Find the volume of that solid.

16. The bounded region in Example 4 is rotated about the line x = 1 to form

a solid. Find the volume of that solid.

17. Consider the indefinite integral

∫

sin ax cos bx dx, where a and b are

nonzero real numbers with a2 6= b2.

(a) Use integration by parts to evaluate the integral.

(b) Use the appropriate trigonometric product-to-sum formula to sim-

plify the integrand. Then evaluate.

(c) Use a CAS (computer algebra system) to evaluate the integral.

18. (a) Use integration by parts to evaluate

∫

sin−1 x dx. (b) Explain how

the figure below can be used to arrive at the same conclusion.
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