
Lecture 37 - Integrals Resulting in
Exponential, Logarithmic, or Inverse
Trigonometric Functions

 

Objectives

1. Evaluate integrals involving exponential functions.
2. Evaluate integrals that result in logarithmic functions.
3. Evaluate integrals that result in inverse trigonometric functions.

In this lecture, we will work through a number of examples of integration where the results
involve exponential, logarithmic, or inverse trigonometric functions. We will use the following
integration formulas, which are easy to verify by differentiating the right-hand sides.

Some integration rules  

1. 

2. 

3. 

4. 

5. 

6. 

Example 1  

Evaluate the indefinite integral .

This integral is very close to #1, but it requires a -substitution.

Let , so that

Upon substituting, we have

Now we can use #1 to obtain

Example 2  
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Evaluate the indefinite integral .

This is precisely a #2 with .

Example 3  

Evaluate the indefinite integral .

First rewrite

Now the integral is set up nicely for a -substitution. Let , so that

Upon substituting, we have

The new integral is easily evaluated by using the power rule:

Example 4  

Evaluate the indefinite integral .

Again, this is a nice integral for a -substitution.

Let , so that

Upon substituting, we have

Now we can use #1 to obtain

Example 5  

Evaluate the definite integral .

Let , so that
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Upon substituting, we have

The integral on the right is easy to evaluate, and since we changed the bounds with our
substitution, there is no need to resubstitute.

Example 6  

Evaluate the indefinite integral .

Even though the integrand could be written as , we cannot use the power rule
antidifferentiate. We must recognize that this is a #3.

Example 7  

Evaluate the indefinite integral .

In order to use #3, we must do a -substitution.

Let , so that

Substitutions in which  are fairly trivial, and with practice and experience, you'll learn to
get along without them. For now, let's substitute and evaluate...

Example 8  

Evaluate the indefinite integral  by using the substitution .

Let , so that

Upon substituting, we have

Example 9  
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Evaluate the definite integral .

This is precisely a #4 with :

Example 10  

Evaluate the indefinite integral .

Let , so that

Upon substituting, we have

This is now a #4 with :

Example 11  

Evaluate the indefinite integral .

This is precisely a #5 with :
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