
Lecture 29: Newton’s method

Objectives:

(29.1) Use Newton’s method to approximate the zeros of a function.

(29.2) Use tangent lines to illustrate Newton’s method.

Newton’s method

In the last example of lecture 20, we used the linearization of a function to approximate a zero of that
function. Repeated use of this idea gives rise to a very effective method for approximating solutions of
f(x) = 0. The method is called Newton’s method or the Newton-Raphson method, named for Isaac Newton
and Joseph Raphson.

Suppose we would like to solve f(x) = 0. Referring to the graph below, let’s say we are looking for the
indicated point (in red). Unfortunately, we have only an initial guess, x0. We will approximate our solution
of f(x) = 0 by solving L(x) = 0, where L is the linearization of f at x0.

L(x) = f(x0) + f ′(x0)(x− x0) = 0 =⇒ x = x0 −
f(x0)

f ′(x0)

We now give this x-value the name x1 so that

x1 = x0 −
f(x0)

f ′(x0)
.

-4

-2

 0

 2

 4

-3 -2 -1 0 1 2 3 4 5 6

x

y

x1

y=f(x)

x0

We have gone from an initial guess at the solution of f(x) = 0 to a new approximation based on the
linearization. From the graph, it looks like the new approximation, x1, is slightly better than our original
guess, x0. At this point, we can simply repeat the process using x1 in place of x0. This would lead to the
new approximation

x2 = x1 −
f(x1)

f ′(x1)
.

This process by which we repeatedly refine our approximations is Newton’s method.

Newton’s method
Suppose we wish to approximate a solution of f(x) = 0. If x0 is an initial approximation, then
Newton’s method generates the following sequence of “improved” approximations:

xn+1 = xn −
f(xn)

f ′(xn)
; n = 0, 1, 2, 3, . . .

91

As we will see, Newton’s method is not guaranteed to converge to a solution, but when it does, it often
does so very quickly.

Example 1 Use Newton’s method, starting with x0 = 1, to approximate the solution of x = cosx.
Continue the process until two consecutive approximations agree to six decimal places.

f(x) = x− cosx and f ′(x) = 1 + sinx. According to Newton’s method,

xn+1 = xn −
xn − cos(xn)

1 + sin(xn)
; n = 0, 1, 2, 3,

This generates the following sequence of approximations:

x0 = 1

x1 = 0.7503638678402439

x2 = 0.7391128909113617

x3 = 0.739085133385284

x4 = 0.7390851332151606

The solution is x ≈ 0.7390851.

Example 2 Use Newton’s method to approximate
√
2.

In order to solve this problem, we need an equation with solution
√
2. The equation x2 − 2 = 0

will do just fine. With this equation, we have

f(x) = x2 − 2 and f ′(x) = 2x.

According to Newton’s method,

xn+1 = xn −
x2
n − 2

2xn
; n = 0, 1, 2, 3,

Using x0 = 1, this generates the following sequence of approximations:

x0 = 1.0

x1 = 1.5

x2 = 1.416666666666667

x3 = 1.41421568627451

x4 = 1.41421356237469

x5 = 1.414213562373095

x6 = 1.414213562373095

It looks like
√
2 ≈ 1.414213562373095.

In the examples above Newton’s method worked very well. The final results are exactly correct up to
the number of digits shown. In addition, the results were obtained very quickly. This is fairly typical of
Newton’s method:

Suppose α is a zero of f of multiplicity 1 and that f ′ is continuous on an interval containing α.
Once the Newton’s method approximations are sufficiently close to α, the number of correct

digits roughly doubles with each iteration.

92

This behavior can be seen in the previous examples. However, Newton’s method is not guaranteed to
produce fast or accurate results.

Example 3 (Slow convergence) Use Newton’s method with x0 = 1.2 to approximate a solution of
x3 − 3x+ 2 = 0.

The details are omitted, but we should find slow convergence to the exact solution x = 1.

Example 4 (No convergence) Use Newton’s method with x0 = 0 to approximate the single real solution
of x3 − x+ 3 = 0.

The details are omitted, but we should find that Newton’s method does not converge to the
solution, x ≈ −1.6717, regardless of the number of iterations.

Example 5 (Worse than no convergence) Use Newton’s method to approximate the solution of
x1/3 = 0. Use any nonzero value for x0.

Notice that x = 0 is the exact solution. We let f(x) = x1/3 and then f ′(x) = (1/3)x−2/3.
According to Newton’s method,

xn+1 = xn −
x
1/3
n

(1/3)x
−2/3
n

= −2xn.

If we start with any nonzero x0, Newton’s method will produce results that get farther and
farther (twice the distance to be precise) from the exact solution with each iteration.

Example 6 (Convergence to a nonsolution) Use Newton’s method with x0 = 1/2 to approximate a
solution of π − 2x sin(πx) = 0.

The details are omitted, but we should find slow convergence to x = 0, even though the equation
has no real solutions.

Examples 3–6 should be analyzed in more detail. In each case, the behavior of Newton’s method is easy
to explain after thinking about the method graphically.

Newton’s method in Python

Python code for using Newton’s method is given below. The user input is between the hashtags, and the
required modifications should be (somewhat) obvious. You can run the code by cutting and pasting into a
SageMath Cell.

Newton’s method to approximate a solution of f(x)=0 given an initial guess, x0.

The user input is between the hashtags. You can run the code by cutting and

pasting into a SageMath Cell.

#

def f(x):

return x - math.cos(x)

def fp(x):

return 1.0 + math.sin(x)

x0 = 1.0

N = 10

#

x = x0

print(0, x)

for i in range(1, N+1):

x = x - f(x)/fp(x)

print(i, x)

93

Newton’s method in Maxima

Maxima is a free, open-source, programmable computer algebra system. It has some major advantages over
Wolfram Alpha, which we have already been using. Maxima is available for download at http://maxima.sourceforge.net/.

Here is the Maxima code for implementing a high-precision version of Newton’s method. User input is
in lines 2–5. fpprec defines the precision, i.e. the number of significant digits displayed and used in the
computations.

/* Newton’s Method */

f: x-cos(x) $

x0: 1 $

N: 10 $

fpprec: 32 $

set_display(ascii)$

fp: diff(f,x,1)$

xn: bfloat(x0)$

print("x", 0, "=", xn)$

for i: 1 thru N do

(xn: bfloat(xn - at(f,x=xn) / at(fp,x=xn)),

print("x", i, "=", xn)

);

94

