Power Series

o0
Recall that we defined a geometric series as one of the form Z ar™. At that time, we were treating
n=0
a and r as constants. In this section, we will start thinking about what happens if ¢ and r are
variable.

Definition 1

A power series centered at z = cis a series of the form

where z is a variable and {a,, }°° , is a sequence of constants.

For the purposes of power series, we stipulate that z° = 1 and (z — ¢)° = 1 even whenz = 0
and z = ¢, respectively. (Normally we consider 0° to be indeterminate.)

Example 1

o0
The series z " =1+x+2* +2° +--is apower series centered z = 0.
n=0
For any z, this series is also a geometric series. Therefore, we know that if |z| < 1, the series
converges and
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Example 2
o] " CEZ $3
The series Z — =142+ — + — + ---is another power series centered at z = 0. &
= nl 2! 3!
Example 3
The series nz=o % is power series centered at z = 1. &
Theorem

For a power series centered at z = ¢, exactly one of the following is true:

1. The series converges only at z = c. It diverges for x # c.

2. The series converges absolutely for all z.

3. There exists a real number R > 0 such that the series converges absolutely if |z — ¢| < R
and diverges if |z — ¢| > R. At the values of z for which |z — ¢| = R, the series may converge
or diverge.
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Definition 2

The number R in case 3 of the theorem above is called the radius of convergence of the power
series. In case 1, we say R = 0; and in case 2, we say R = oo. The set of all z-values for which a

power series converges is called its interval of convergence.

A typical approach to finding the radius and interval of convergence of a power series is to apply a
convergence test that includes some kind of inequality condition. The typical choices are the ratio,
root, and geometric series tests. The next examples will illustrate the ideas.

Example 4
00 "
Find the radius and interval of convergence of the power series Z —
~—~ n!
By the ratio test, this series converges absolutely when
"t n! x
lim |—  —| = lim i <1.
n—oo|(n+ 1)1 z" n—oo N+
For any value of z, n‘%ll — 0asn — oo, so the limit is zero. Zero is always less than one! This
series converges absolutely for every number z. The radius of converges is co, and the interval of
convergence is (—oo, 00). &
Example 5

o
Find the radius and interval of convergence of the power series Z nlz".

n=0
Let's use the ratio test to test for convergence:

(n+ 1)z

lim
n!xn

n—oo

= lim (n +1) |z.

For any z # 0, the limit is 0o. This series diverges everywhere except for x = 0. The radius of
convergence is 0. The interval of convergence is really not an interval at all, it is the single number

z=0. &

Example 6

o0 o 1 n
Find the radius and interval of convergence of the power series Z (:n—)n
— (n+1)2

Again, we will use the ratio test.

. (z — 1" (n+1)2" o Jz—=1n+1 |z -1
lim . = lim —
n—00 (Tl + 2) gn+1 (m — 1)" n—00 2 n-+2 2

2~ 1

The series converges if < lor|z —1| < 2.50 the radius of convergence is 2.
To find the interval of convergence, we solve the inequality |z — 1| < 2.

-1 <2<= -2<z-1<2<=-1<z<3.
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We have so far established that the interval of convergence is (—1, 3). Notice that this is the open
interval centered at z = 1 with radius 2. But according to part 3 of the theorem, we have more to
consider. The series may actually converge at the interval endpoints. We must check!

For z = —1, the series is
Sy
(n+1)2" i (n+1) ’

n=0

which converges by the alternating series test.

For x = 3, the series is

o (n+1)2" — (n+1)’
which is the divergent harmonic series.
Therefore, when all is said and done, the interval of convergence is [—1, 3). &

Comments

1. For the interval of convergence, you will always have to individually check the interval
endpoints. This is an important step, but it is easy to overlook.

2. A power series is a function whose domain is its interval of convergence.

3. When a power series describes a function, it may be that the function can be written in a
more familiar way. For instance, see example 1 above. The final examples further illustrate

this idea.
Example 7
. 1
Use a power series to represent f(z) = .
1+ 23

The form of f(x) leads us to think about geometric series. Notice that

1 1

1+a® 1 (%)

It follows that f(z) is the sum of a geometric series witha = 1 and r = —2*:

1 o0

n=0

This geometric series converges when | — 3| < 1, which is precisely when |z| < 1. So the interval
of convergence is (—1, 1). (It is easy to see that the series diverges at the interval endpoints.)

o

Example 8

Use a power series to represent f(z) =

Thinking of geometric series again, let's rewrite f(z):

o2 (2) ()

Now f(z) is the product of z* /2 and a geometric series with a = 1 and r = z/2:
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This series converges when |z /2| < 1 or |z| < 2. The radius of convergence is 2, and the interval
of convergence is (—2, 2). Since we already know that geometric series diverge when r = 1, there
is no need (in this case) to check interval endpoints. &
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