A function is said to be analytic at x=c if, in an open interval centered at c, the function has a power series representation with a positive radius of convergence, and the power series converges to the function.

- Polynomials are analytic everywhere.
- Rational functions are analytic wherever the denominator is nonzero.
- If f and g are analytic at x = c, then so are
 - 1. f + g
 - 2. $f \cdot g$
 - 3. f/g, provided $g(c) \neq 0$

The point c is called an *ordinary point* of the equation y'' + p(x)y' + q(x)y = 0 if p and q are analytic at x = c. If c is not an ordinary point, it is called a *singular point*.